BSc II Year

Paper Code: 294

Statistical Inference
Unit 1

UNIFIED SYLLABUS OF STATISTICS

B.Sc. Part- II

Paper I : Statistical Inference

UNIT - I
Point estimation. Characteristics of a good estimator: Unbiasedness, consistency, sufficiency and efficiency. Method of maximum likelihood and properties of maximum likelihood estimators (without proof). Method of minimum Chi-square. Method of Least squares and method of moments for estimation of parameters. Problems and examples.

UNIT - II

Sufficient Statistics, Cramer-Rao inequality and its use in finding MVU estimators. Statistical Hypothesis (simple and composite). Testing of hypothesis. Type I and Type II errors, significance level, power of a test. Definitions of Most Powerful (MP), Uniformly Most Powerful (UMP) and Uniformly Most Powerful Unbiased (UMPU) tests.

UNIT - III

Neyman-Pearson's lemma and its applications for finding most powerful tests for simple hypothesis against simple alternative. Interval estimation - concept of interval estimation confidence interval for mean \& variance in case of normal population only.

UNIT-IV

Test of significance - large sample test for proportions and means : (i) single sample, (ii) two independent samples. Tests based on chi-square, t and F distributions.

Sfatisticab五forence
Statistical Inference
 been called statistical inference.
(1) Estimation: - Some features of the poplin in which an investigator is interested, may be knownto him and he may want to make a guess about this features, on the basis of a random sample drawn from the poplin. This type of problem is called problem of estimation.
(2) Testing of Hypothesis: - Some tentative information on a feature of the population may be available to the investigator and he may conto see conether the information is tenable in the light of the random sample taken from the population. This type of problem is called the problem of testing of hypothesis.
(1) Concept of Estimation: - the problem of estimation is loosely defined as: assume that some characteristics of the elements of the poplin. can be represented by a riv. X chose PMF, or PDF if $f(x, \theta)$ cohere the functional form of the PMF or PDF is known except the parameter $\theta, \theta \in \Omega$. The set Ω is called the parameter space. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ bean observed random sample from $f(\dot{x}, \theta)$. On the basis of the observed random sample, it is desired to estimate the value of the parameter θ. This estimation is done in two ways,
(a) Point Estimation: - The problem of point estimation is to pick or select a statistic $T\left(x_{1}\right)=T$ that best estimates the parameter.
The numerical value of $T(\underset{\sim}{x})$ cohen an observed value of x is $\underset{\sim}{x}$; is called an estimate of θ cohile such a statistic $T(\underset{\sim}{x})$ is called an estimator of θ. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be a random sample from $f(x, \theta)$. Then $\bar{x}=\frac{x_{1}+x_{2}+x_{3}}{3}$ is an estimator of θ. If the observed sample is $(-1,1,3)$, then the sample mean, $\bar{x}=1$ is an estimate of θ.
(b) Interval Estimation: - The problem of interval estimation is to define 2 statistic $T_{1}(\underset{\sim}{x})$ and $T_{2}(\underset{\text { a }}{ })$ such that $\left(T_{1}+T_{2}\right)$ constitutes an interval for which the probability can be determined that it contains the parameter θ.
(a) Point Estimation: - If is clear that if any given problem of $\approx \quad \begin{aligned} & \text { estimation, we may have a large, often an } \\ & \text { no. of estimators, we may choose from. }\end{aligned}$ Requirement of good estimator/Measures of quality of the estimator
Clearly we could like the estimator $T(x)=T$ to be close to θ. Since T is a R.V., the usual measures of closeness $|T-\theta|$ is also a R.Y. Example of such measure of... closeness are

$$
\left.\begin{array}{l}
\text { Part: 1: } P[|T-\theta|<\epsilon] \quad \forall \epsilon>0 \\
\text { Part: 2: } E[|T-\theta| r \mid, \text { for some } r>0 . \\
{\left[P[|T-\theta|<\epsilon]>1-E\left[|T-\theta|^{r}\right]\right.} \\
\epsilon^{r}
\end{array}\right] .
$$

We want to be large (1) but to be small (2).
Mean Square Error (MSE):- A useful, though perhaps a crude measure of closeness of an estimator T of θ is $E(T-\theta)^{2}$, which is obtained from (2) by putting $r=2$.
Definition:- Let T is an estimator of θ. The quantity $E(T-\theta)^{2}$ is defined to be the MSE of estimation T.
Notation:- $M S ฺ E_{\theta}(T)=E[T-\theta]^{2}$.
Note that, $E[T-\theta]^{2}$ is a measure of spread of the values of T about the parameter θ. If we are to compare estimators by looking at there respective MSE $\$$, naturally we would prefer (1) with small or smallest MSE.
Here the requirement is to choose T_{0} such that $M S E_{\theta}\left(T_{0}\right) \leqslant M S E_{\theta}(T)$. for all T, for $\theta \in \Omega$. But such estimator nearly exists.
Note that, $\operatorname{MSE} \theta(T)=E(T-\theta)^{2}$

$$
\begin{aligned}
= & E[T-E(T)+E(T)-\theta]^{2} \\
= & E\{T-E(T)\}^{2}+\{E(T)-\theta\}^{2} \\
& +2 E\{T-E(T)\}\{E(T)-\theta\}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{var}(T)+\{b(\theta, T)\}^{2} \\
& \text { we need to }
\end{aligned}
$$

Hence, to control MSE, we meed to control both $\operatorname{Var}(T)$ and $\{b(\theta, T)\}^{2}$, the quantity $b(\theta, T)=E(T)-\theta$, is called the bias of T in estimating θ.

One e approach is to restrict attention to those estimator which have zero bias, i.e. $E(T)=\theta \quad \forall \theta \in \Omega$.
If $b(\theta, T)=0$, then T is called an unbiased estimator of θ and $M_{S E}(T)=\operatorname{Var}(T)$.
Now, it is required to find an estimator coth uniformly minimum MSE among all unbiased estimator, which is equivalent to finding an estimator with uniformly minimum x ariance among all unbiased estimator. This is the concept of unbiasedness and minimum variance.
Unbiasedness:-
Definition: An estimator T is defined to be an unbiased estimator (UE) of θ if $E(T)=\theta \quad \forall \theta \in \Omega$.
Unbiasedness of T says that T has no systematic enron, it neither overestimates non underestimates θ on an average.
Biasedness:-
Definition: ~ An estimator T is said to be biased for the parameter θ if $E(T) \neq \theta$ for some $\theta \in \Omega$.
Ex.1. Unbiased Estimator of population moments:-
Let $X_{1}, X_{2}, \ldots, x_{n}$ be a bis from a poplin. with finite k th order moment $\mu_{k}^{\prime}=E\left(x_{1}^{k}\right)$. Nothing else is known about the poplin. distribution. Find an unbiased estimator of $\mu_{r}^{\prime}, 1 \leq r \leq k$.
Solution:- Define $m_{n}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{r}$
Then, $E\left(m_{n}^{\prime}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{r}\right)$

$$
\begin{align*}
& \quad i=1 \\
& =\frac{1}{n} \cdot n \cdot E\left(X_{1}^{r}\right), \text { as } x_{i}^{\prime} \text { 's are i.i.d. } \\
& =E\left(X_{1}^{r}\right) \tag{VE}\\
& =\mu_{r}^{r} \text { 's are i.i.d. }
\end{align*}
$$

Hence, the sample r th order raw moment is an unbiased estimator of $\mu r^{\prime}, r=1(1) k$.

Ex.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the random sample from an infinite population with mean μ and variance $\sigma^{2}(<\infty)$. Show that

$$
\begin{aligned}
& S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2} \text { is a biased estimator of } \sigma^{2} \text {. } \\
& \text { un of } \sigma^{2} \text {. }
\end{aligned}
$$

Hence, find an ${ }^{i=1}$ UE of σ^{2}.
Solution:-

$$
\begin{aligned}
& \text { Find an } \\
& \begin{aligned}
& =1 \\
E & \left.U E \text { of } S^{2}\right]
\end{aligned}=\frac{1}{n} E\left[\sum_{i=1}^{n}\left(x_{i}-\mu-\bar{x}+\mu\right)^{2}\right] \\
&=\frac{1}{n} E\left[\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-n(\bar{x}-\mu)^{2}\right] \\
&=\frac{1}{n}\left\{\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)-n \operatorname{var}(\bar{x})\right\} \\
&=\frac{1}{n} \cdot\left\{n \sigma^{2}-\frac{n \cdot \sigma^{2}}{n}\right\}=\frac{n-1}{n} \sigma^{2}
\end{aligned}
$$

[Here, $E\left(x_{i}\right)=\mu, \operatorname{Var}\left(x_{i}\right)=\sigma^{2}$

$$
\left.\begin{array}{l}
E\left(x_{i}\right)=\mu, \quad \operatorname{Var}\left(x_{i}\right)=\sigma^{2} \\
E(\bar{x})=\mu, \quad \operatorname{Var}(\bar{x})=\frac{1}{n^{2}} \sum_{i=1}^{n} \nu\left(x_{i}\right)=\frac{\sigma^{2}}{n} .
\end{array}\right]
$$

Here, $E\left(s^{2}\right)=\frac{n-1}{n} \cdot \sigma^{2} \neq \sigma^{2} \therefore$ Bias $=E\left(s^{2}\right)-\sigma^{2}$

$$
\Rightarrow E\left(\frac{n s^{2}}{n-1}\right)_{n}=\sigma^{2}
$$

$$
\begin{aligned}
& =£\left(s^{2}\right)-\sigma^{2} / n \\
& =-0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $S^{12}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is a $V E$ of σ^{2}.

$$
\begin{aligned}
\therefore \operatorname{Bias}\left(\sigma^{2}, s^{2}\right) & =E\left(s^{2}\right)-\sigma^{2} \\
& =-\frac{1}{n} \sigma^{2} \longrightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Ex.3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a rios. from $P(\lambda)$ distr. S.T. for $0 \leq \alpha \leq 1$, $T_{\alpha}=\alpha \bar{x}+(1-\alpha) s^{2}$ is an. UE of λ and comment.
Solution:- we know that \bar{x} and s^{2} are UEs of the popln mean and variance, respectively. Since for $P(\lambda)$ distr., $\bar{X}=s^{2}=\lambda$.
Hence, $E\left(T_{\alpha}\right)=\alpha E(\bar{x})+(1-\alpha) E\left(s^{2}\right)$

$$
\begin{aligned}
& =\alpha, \lambda+(1-\alpha) \lambda \\
& =\lambda, \quad \alpha \in[0,1]
\end{aligned}
$$

For each $\alpha \in[0,1], T_{\alpha}$ is an UE of λ. Hence there are infitely many USs of λ of the form

$$
T \alpha=\alpha \bar{x}+(1-\alpha) s^{2}
$$

Let T_{1} and T_{2} be two different $U E$ s of θ. then there exists an infinitely many UE\& of θ of the form:

$$
T_{\alpha}=\alpha_{1} T_{1}+(1-\alpha) T_{2}, \quad 0 \leq \alpha \leq 1
$$

which of these should we choose?
Here comes the concept of UMVUE.
Definition: -
(a) An estimator T^{*} is defined to be UMVUE of θ iff i) $E\left(T^{*}\right)=\theta \quad \forall \theta \in \Omega$.
ii) $\operatorname{var}_{\theta}\left(T^{*}\right) \leq \operatorname{var} \theta(T) \quad \forall \theta \in \Omega$,
for any estimator T which satisfies $E(T)=\theta \forall \theta \in \Omega$.
(b) An UE is said to be UMVUE of θ if it has minimum variance among all VEs of θ.
Ex.1. Wet $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U(0, \theta)$. Find two UEs of θ, one based on \bar{X} and other based on $X(n)$. Which one is betters?
Solution: -

$$
\begin{aligned}
& E(\bar{X})=E\left(X_{1}\right)=\frac{\theta}{2} \\
& \Rightarrow E(2 \bar{X})=\theta
\end{aligned}
$$

Hence $T_{1}=2 \bar{x}_{\theta}$ is an UE of θ.

$$
\begin{aligned}
& \text { Hence, } T_{2}=\frac{n+1}{n} X(n) \text { is an UE of } \theta, \\
& \text { Now, } \operatorname{Var}\left(T_{1}\right)=4 \cdot V(\bar{x})=4 \cdot \frac{V\left(X_{1}\right)}{n}=4 \cdot \frac{\theta^{2}}{12 n}=\frac{\theta^{2}}{3 n}
\end{aligned}
$$

$$
\text { and } \operatorname{Var}\left(T_{2}\right)=\left(\frac{n+1}{n}\right)^{2} E\left(X_{\theta}^{2}(n)\right)-E^{2}\left(\frac{n+1}{n} X(n)\right)
$$

index.

$$
\begin{aligned}
& =\left\{1-\left(1-\frac{x}{\theta}\right)\right\}^{n}, 0<x<\theta \\
& \therefore f_{X_{(1)}}(\dot{x})=\frac{n}{\theta}\left(1-\frac{x^{n-1}}{\theta}\right)^{n} \\
& \therefore E\left(X_{(1)}\right)=\frac{\theta}{n+1} \\
& \therefore E\left((n+1) X_{(1)}\right)=\theta
\end{aligned}
$$

\therefore Otis unbiasedly estimated by $(n+1) x_{(1)}$.

Note that $\frac{V\left(T_{1}\right)}{V\left(T_{2}\right)}=\frac{n+2}{3} \geqslant 1, n \in \mathbb{N}$
For $n>1, V\left(T_{1}\right)>V\left(T_{2}\right)$ and T_{2} has smaller variance than T_{1}. Hence, $T_{2}=\frac{n+1}{n} X(n)$ is bettor estimator in estimating θ.

Scanned by CamScanner

$$
\begin{aligned}
& E[X(n)]=\int_{0}^{\theta} x \cdot \frac{n x^{n-1}}{\theta^{n}} d x \quad\left[\because f_{X_{(n)}}(x)=\left\{\begin{array}{ll}
\left.\frac{n x^{n-1}}{\theta^{n}}, 0<x<\theta\right] \\
0,0 w
\end{array}\right]\right. \\
& =\frac{n}{\theta^{n}} \int_{0} x^{n} d x=\frac{n \theta}{n+1} \\
& \Rightarrow E\left\{\frac{n+1}{n} X_{(n)}\right\}^{0}=\theta \\
& \text { Hence, } T_{2}=\frac{n+1}{n} X(n) \text { is an UE of } \theta \text {. } \\
& \text { for } X(1):- \\
& P\left[X_{(1)} \leqslant x\right]=1-P\left[X_{(1)}>x\right] \\
& =1-P\left[X_{1}, \ldots, X_{n}>x\right] \\
& =1-\prod_{i=1}^{n} P\left[x_{i} \geq x\right] \\
& \text { [duet }
\end{aligned}
$$

Theorem:- The UMVUE of a parameter, if exists, is unique.
Proof:- If possible, let T_{1} and T_{2} be two VMVUE s of θ.
Then $V\left(T_{1}\right)=\gamma\left(T_{2}\right)=\gamma$, say.
clearly $T=\frac{T_{1}+T_{2}}{2}$ is also an VE of θ.
Hence, $\operatorname{Var}(T) \geqslant \gamma$

$$
\begin{aligned}
& \Rightarrow \operatorname{var}\left(\frac{T_{1}+T_{2}}{2}\right) \geqslant \gamma \\
& \Rightarrow \frac{1}{4}\left[V\left(T_{1}\right)+V\left(T_{2}\right)+2 \operatorname{cov}\left(T_{1}, T_{2}\right)\right] \geqslant \gamma \\
& \Rightarrow \frac{1}{4}[\gamma+\gamma+2 \rho \gamma] \geqslant \gamma \quad\left[\because \operatorname{cov}\left(T_{1}, T_{2}\right)=\rho \sqrt{\gamma\left(T_{1}\right) V\left(T_{2}\right)}\right. \\
& \Rightarrow \rho \geqslant 1, \text { but }|\rho| \leqslant 1 .
\end{aligned}
$$

Hence, $P=1$.

$$
\Rightarrow T_{1}=a+b T_{2}, b>0 \text { with prob.1. }
$$

Now, $E\left(T_{1}\right)=a+b, E\left(T_{2}\right)$

$$
\Rightarrow \theta=a+b \theta \quad \forall \theta
$$

$\Rightarrow a=0, b=1$, equating the coefficients of constant term and θ.

$$
\left[Y\left(T_{1}\right)=b^{2} Y\left(T_{2}\right) \Rightarrow b^{2}=1, b>0 \Rightarrow b=1\right. \text {. and }
$$

$$
\left.E\left(T_{1}\right)=a+b E\left(T_{2}\right) \Rightarrow \theta=a+1 . \theta \Rightarrow a=0\right]
$$

Hence $T_{1}=T_{2}$ with prob, 1.
ire: UMVUE, if exists, is unique.
Ex. 2.
Let. T_{1}, T_{2} be two UEs with common variance $\alpha \sigma^{2}$, cohere σ^{2} is the variance of the UMVUE. Show that,

$$
\rho_{T_{1}, T_{2}} \geqslant \frac{2-\alpha}{\alpha}
$$

Solution:-
Note that, $T=\frac{T_{1}+T_{2}}{2}$ is an VE of the parameter.
clearly, $V(T) \geqslant \sigma^{2}$

$$
\begin{aligned}
& \Rightarrow V\left(\frac{T_{1}+T_{2}}{2}\right) \geqslant \sigma^{2} \\
\Rightarrow & \frac{1}{4}\left[V\left(T_{1}\right)+Y\left(T_{2}\right)+2 \operatorname{cov}\left(T_{1}, T_{2}\right)\right] \geqslant \sigma^{2} \\
\Rightarrow & \frac{1}{4}\left[2 \alpha \sigma^{2}+2 \rho_{T_{1}, T_{2}} \cdot \alpha \sigma^{2}\right] \geqslant \sigma^{2} \\
\Rightarrow & \frac{\alpha}{2}\left\{1+P_{T_{1}}, T_{2}\right\} \geqslant 1 \\
\Rightarrow & f_{T_{1}}, T_{2} \geqslant \frac{2}{\alpha}-1=\frac{2-\alpha}{\alpha} .
\end{aligned}
$$

Further Problems:-
Ex.1. Estimating p^{2} for Bernoulli distribution
(a) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $B(1, p), 0<p<1, n \geqslant 2$. Can we estimate p^{2} unbiasedly based on x_{1}, \ldots, x_{n} ? If so, how?
(b) Let x be a single observation from $B(1, p)$. Can you estimate p^{2} unbiasedly based on x ?
Solution: -
(a) Let $T=\sum_{i=1}^{n} x_{i}$. Then T denotes the no. of successes in n independent $i=1$ Bernoulli trials.
Hence, $T \sim \sin (n, p)$.

$$
\left[\because E\left[(T)_{r}\right]=(n) r \cdot p^{r}, r \leq n\right]
$$

We have, $E\{T(T-1)\}=n(n-1) p^{2}$

$$
\Rightarrow E\left\{\frac{T(T-1)}{n(n-1)}\right\}=p^{2}
$$

Hence $h(T)=\frac{T(T-1)}{n(n-1)}$ is an UE of p^{2}.
(b) If possible, let $T(x)$ be an UE of b^{2}.

Then by definition,

$$
\begin{align*}
& E(T(x))=p^{2} \quad \forall p \in(0,1) \\
\Rightarrow & \sum_{x=0}^{1} T(x) p[x=x]=p^{2} \\
\Rightarrow & T(0) \cdot(1-p)+T(1) p=p^{2} \\
\Rightarrow & p^{2}+\{T(0)-T(1)\} p-T_{0}=0, \forall p \in(0,1) \tag{i}
\end{align*}
$$

Clearly, (i) is an identity in p.
Equating the coefficients of p^{2}, p and constant term, we get,

$$
1=0 \rightarrow \text { absurd }
$$

and $T(0)-T(1)=0$
Hence, there exists no $T(x)$ which will satisfy " $E[T(x)]=p^{2}$ " $\forall p \in(0,1)$.
Hence, there is no $U E$ of p^{2} based on a single observation x from $\operatorname{Bin}(1, p)$.

Ex. (2). Let x be a single observation from $P(\lambda)$. Does there exist an UE of $\frac{1}{\lambda}$?
Solution:-
If possible, let $T(x)$ be an $U E$ of $\frac{1}{\lambda}$.
Then $E(T(x))=\frac{1}{\lambda} \forall \lambda>0$

$$
\begin{aligned}
& \Rightarrow \sum_{x=0}^{\infty} T(x) e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}=\frac{1}{\lambda} \quad \forall \lambda>0 \\
& \Rightarrow \sum_{x=0}^{\infty} T(x) \cdot \frac{\lambda^{x+1}}{x!}=e^{\lambda} \\
& \Rightarrow \sum_{x=0}^{\infty} T(x) \cdot \frac{\lambda^{x+1}}{x!}=\sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}, \lambda>0 \\
& \Rightarrow 1+\left\{\frac{1}{1!}-\frac{T(0)}{0!}\right\} \lambda+\left\{\frac{1}{2!}+\frac{T(1)}{1!}\right\} \lambda^{2}+\cdots \cdots=0 \quad \forall \lambda>0
\end{aligned}
$$

By uniqueness of power semis, we have

$$
\begin{aligned}
1 & =0 \quad(\text { absurd }) \\
\frac{1}{1!}-\frac{T(0)}{0!} & =0, \quad \frac{1}{2!}-\frac{T(1)}{1!}=0, \ldots . .
\end{aligned}
$$

Hence, there exists no UE of $\frac{1}{\lambda}$ based on X.
Ex. 3.
(a) Starting from the equation $\sigma^{2}=E\left(x^{2}\right)-\mu^{2}$, we get $\mu^{2}=E\left(x^{2}-\sigma^{2}\right)$ and $\left(x^{2}-\sigma^{2}\right)$ is an UE of μ^{2}, what is $\mu^{\prime}=E\left(x^{2}\right.$ principal defects?
Solution:-
Hints: - (a) If σ is unknown, then $\left(x^{2}-\sigma^{2}\right)$ is not a statistic and not measurable or observable. Then, $\left(x^{2}-\sigma^{2}\right)$ can not be used as an estimator of μ^{2}..
(b) Show that if $\hat{\theta}$ is an UE of θ and $\operatorname{yar}(\hat{\theta}) \neq 0, \hat{\theta}^{2}$ is not an $U E$ of θ^{2}.
Hints:-

$$
\begin{aligned}
& 0<\operatorname{Var}(\hat{\theta})=E\left(\hat{\theta}^{2}\right)-E^{2}(\hat{\theta}) \\
&=E\left(\hat{\theta}^{2}\right)-\theta^{2} \\
& \Rightarrow E\left(\hat{\theta}^{2}\right)>\theta^{2}
\end{aligned}
$$

Ex.4. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $N\left(0, \sigma^{2}\right)$ distr. Suggest an UE of σ based on $\sum_{i=1}^{n}\left|x_{i}\right|$ and also an alternative UE based on $\sum_{i=1}^{n} x_{i}{ }^{2}$.
Solution: - Note that, $E\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)=\sum_{i=1}^{n} E\left|x_{i}\right|=\sum_{i=1}^{n} \sigma \sqrt{\frac{2}{\pi}}$

$$
=\sigma_{1} n_{1} \sqrt{\frac{2}{\pi}}
$$

$$
\Rightarrow E\left\{\sqrt{\frac{\pi}{2}} \cdot \frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|\right\}=\sigma
$$

$\Rightarrow T_{1}=\sqrt{\frac{\pi}{2}} \cdot\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|\right)$ is an UE of σ^{2}.
Now,

$$
x^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{\sigma^{2}} \sim x_{n}^{2}
$$

$$
\begin{aligned}
{\left[E\left(x^{2}\right)=\right.} & \Rightarrow E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}{ }^{2}\right)=\sigma^{2} \\
& \left.\Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_{i}{ }^{2} \text { is an UE of } \sigma^{2}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
& E\left[\sqrt{x^{2}}\right]=\int_{0}^{\infty} \sqrt{x} \cdot \frac{1}{2^{n / 2} \sqrt{n / 2}} \cdot e^{-x / 2} x^{\frac{n}{2}-1} d x \\
&=\frac{2^{\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right)}{2^{n / 2} \Gamma(n / 2)}=\frac{\sqrt{2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}=c_{n}, s a y \\
& \Rightarrow E\left(\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sigma^{2}}\right)^{1 / 2}=C n \Rightarrow E\left(\frac{1}{e_{n}} \cdot \sqrt{\sum_{i=1}^{n} x_{i}^{2}}\right)=\sigma_{1} \\
& \Rightarrow T_{2}=\frac{1}{c_{n}} \cdot \sqrt{\sum_{i=1}^{n} X_{i}^{2}} \text { is an UE of } \sigma .
\end{aligned}
$$

Ex.5. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $N(\mu, 1)$. Find an UE of μ^{2}.
Solution: -

$$
\begin{aligned}
& -V(\bar{x})=\frac{1}{n} \\
& \Rightarrow E\left(\bar{x}^{2}\right)-E^{2}(\bar{x})=\frac{1}{n} \\
& \Rightarrow E\left(\bar{x}^{2}-\frac{1}{n}\right)=\mu^{2} .
\end{aligned}
$$

Note that, the estimator $\left(\bar{X}^{2}-\frac{1}{n}\right)$ can take negative values in estimating a positive parameter μ^{2} and $\left(\bar{x}^{2}-\frac{1}{n}\right)$ is not so sensitive.

Ex.6. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N(\mu, \mu), \mu>0$. Find an $U E$ of μ^{2} based on both \bar{x} and s^{2}.
Solution: -
Here \bar{X} is an UE of population mean $E\left(X_{1}\right)=\mu$ and s^{2} is UE of poplin. variance $V\left(X_{1}\right)=\mu$.

Hence, $E\left(\bar{X} \cdot s^{2}\right)=E(\bar{X}) \cdot E\left(s^{2}\right)=\mu^{2}$.
[For a normal sample, \bar{X} and s^{2} are independently distributed]
N.T. $\alpha \bar{x}+(1-\alpha) s^{2}$ is an $V E$ of $\mu, 0 \leq \alpha \leq 1$.

Ex.7. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from the PDF

$$
f(x)= \begin{cases}\theta x^{\theta-1}, & 0<x<1 \\ 0 & , 0 w, \text { where } \theta>0\end{cases}
$$

Find an UE of (i) $\frac{1}{\theta}$, (ii) θ.
Solution:-0i) Let $z_{i}=-2 \theta \ln x_{i}$, then $x_{i}=e^{-\frac{z_{i}}{2 \theta}}$ The PDF of z_{i} is,

$$
\Rightarrow \sum_{i=1}^{n} z_{i} \sim \chi_{2 n}^{2}
$$

$$
\text { i.e. } y_{i}=\sum_{i=1}^{n}\left(-2 \theta \ln x_{i}\right) \sim x_{2 n}^{2}
$$

Now, $E\left(\sum_{i=1}^{n}-2 \theta \ln x_{i}\right)=2 n$

$$
\Rightarrow E\left(-\frac{1}{n} \sum_{i=1}^{n} \ln x_{i}\right)=\frac{1}{\theta}
$$

$\Rightarrow T_{1}=\frac{1}{n} \sum_{i=1}^{n}-\ln x_{i}$ is an UE of $\frac{1}{\theta}$.
ii) Now, $E\left(\frac{1}{y}\right)=E\left(\frac{1}{x_{2 n}^{2}}\right)=2^{-1} \frac{\Gamma\left(\frac{2 n}{2}-1\right)}{\Gamma\left(\frac{2 n}{2}\right)}$ if $n>1$

$$
\left.\begin{array}{l}
=E\left(\frac{1}{2} \cdot \frac{\Gamma(n-1)}{\Gamma(n)}=\frac{1}{2(n-1)}, n>1\right. \\
\Rightarrow \sum_{i=1}^{n}-2 \theta \ln x_{i}
\end{array}\right)=\frac{1}{2(n-1)}, n>1 .
$$

$$
\Rightarrow T_{2}=\frac{n-1}{\sum_{i=1}^{n}-\ln x_{i}} \text { is an UE of } \theta \text {. }
$$

Ex.8. Unbiased estimator may sometimes be absurd. Give an example of Absurd unbiased estimator.
Solution:- Let x be a single observation of $P(x)$. If possible, let, ann $T(X)$ be an UE of $e^{-3 \lambda}$.

Then

$$
E[T(X)]=e^{-3 x}, \quad V \lambda>0
$$

$$
\Rightarrow \sum_{x=0}^{\infty} T(x) \cdot e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}=e^{-3 \lambda}
$$

$$
\Rightarrow \sum_{x=0}^{x=0} T(x) \cdot \frac{\lambda^{x}}{x!}=e^{-2 \lambda}=\sum_{x=0}^{\infty} \frac{(-2 \lambda)^{x}}{x!}, \lambda>0
$$

By uniqueness of Power series, we have

$$
\frac{T(x)}{x!}=\frac{(-2)^{x}}{x!} \quad \forall x=0,1,2, \ldots \ldots
$$

$\Rightarrow T(x)=(-2)^{x} \quad \forall x=0,1,2, \ldots$.
Hence, $T(x)=(-2)^{x}$ is the unique UE of $e^{-3 \lambda}$.
N.T. $T(x)=(-2)^{x}= \begin{cases}2^{x}, & x=0,2,4, \ldots . \\ -2^{x}, & x=1,3,5, \ldots .\end{cases}$

Hence, $T(x)$ is UE but it takes negative values in estimating a positive parameter $R^{-3 \lambda}$. This is an example of absurd UE.
Remark:- (1) Here $T(x)=(-2)^{x}$ is the only or unique UE of $e^{-3 \lambda}$. Hence, $T(x)=(-2)^{x}$ is the UMVUE of $e^{-3 x}$.
(2) For $x \sim P(\lambda), P_{x}(t)=e^{\lambda(t-1)}, t \in R$
$\Rightarrow E\left[t^{x}\right]=e^{\lambda(t-1)}, t \in R$
Put, $t=-2$,

$$
\begin{aligned}
& t=-2, \\
& E\left[(-2)^{x}\right]=e^{-3 \lambda}
\end{aligned}
$$

Ex.9. If $x \sim \operatorname{Bin}(n, p)$, then show that only polynomial in p of degree $\leq n$ are unbiasedly estimable.
Solution: - [A parametric function $\psi(\theta)$ is unbiasedly estimable if

$$
E\{T(x)\}=\Psi(\theta) \text {, for some } T(x), \forall \theta \in \Omega .]
$$

Let $\Psi(p)$ be an unbiasedly estimable parametric function.
Then \exists a statistic $T(X) \partial$
$\psi(p)=E(T(x)) \quad \forall p \in(0,1)$
$=\sum_{x=0}^{n} T(x)\binom{n}{x} p^{x}(1-p)^{n-x}$
$=\sum_{x=0}^{n} T(x) \cdot\binom{n}{x} p^{x}\left\{\sum_{k=0}^{n-x}\binom{n-x}{k}(-p)^{k}\right\}$
$=\sum_{x=0}^{n=0} \sum_{k=0}^{n-x}(-1)^{k} T(x)\binom{n}{x}\binom{n-x}{k} p^{x+k}$, which is a polynomial in p of $\log _{\leq n}$.
Remark:- N.T. (i) \sqrt{p}, (ii) $\frac{1}{p}$, (iii) e^{p}, (iv) $\log p$ are not polynomials and hence not unbiasedly estimable. If $X \sim B(1, p)$, then only linear function in p are usbiasedly estimable. Hence, p^{2}, a and degree polynomial is not unbiasedly estimable.

Best Linear Unbiased Estimator (BLUE):
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from a population with mean μ and. variance $\sigma^{2}(<\infty)$. Then an estimator $T=\sum_{i=1}^{n} a_{i} x_{i}$ is called a linear estimator. A linear estimator $T=\sum_{i=1}^{n} a_{i} x_{i}$ is in biased for μ
if $E(T)=\mu \quad \forall \mu$
iff $\left(\sum_{i=1}^{n} a_{i}\right) \mu=\mu \quad \forall \mu$
iff $\sum_{i=1}^{n} a_{i}=1$.
[The estimator $\mathrm{x}^{2}, T=\sum_{i=1}^{n} a_{i} e^{x_{i}}$ is not linear estimators also, $T_{3}=\bar{x}^{2}, T_{4}=s^{2}$ are linear estimators.]
Definition:- A linear unbiased estimator $T=\sum_{i=1}^{n} a_{i} x_{i}$ with $\sum_{i=1}^{n} a_{i}=1$ of μ that has the minimum variance among all ${ }^{\prime}$ line or unbiased estimators of μ, is called the BLUE of μ.
Theorem:- If $x_{1}, x_{2}, \ldots ., x_{n}$ be a bis. from a population with mean μ and variance σ^{2}, show that the sample mean \bar{X} is the BLIUE of μ.
[WBSU'IG]

Proof: - BLUE of μ is the estimator which has the minimum variance in the class $\ell=\left\{T: T=\sum_{i=1}^{n} a_{i} x_{i}, \sum_{i=1}^{n} a_{i}=1\right\}$ of all linear UE\& of μ.
Note that, $\quad \operatorname{var}(T)=\left(\sum_{i=1}^{n} a_{i}^{2}\right) \sigma^{2}$, as $X_{i}^{\prime} s$ are id and $\sum_{i=1}^{n} a_{i}=1$.
To minimize $\operatorname{var}(T)=\sigma^{2}\left(\sum_{i=1}^{n} a_{i}{ }^{2}\right)$ subject to $\sum_{i=1}^{n} a_{i}=1$,
By $c-s$ inequality,

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} a_{i}{ }^{2} \cdot 1\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} 1^{2}\right) \\
& \Rightarrow \sum_{i=1}^{n} a_{i}{ }^{2} \geqslant \frac{1}{n} \quad \text { as } \quad \sum_{i=1}^{n} a_{i}=1
\end{aligned}
$$

N.T. with $\sum_{i=1}^{n} a_{i}=1, \sum_{i=1}^{n} a_{i}{ }^{2}$ attains its minimum
iff ' $=$ 'holds in $\operatorname{c-s}$ inequality.
if $a_{i} \propto 1 \quad \forall i=1(1)^{n}$
if $a_{i}=k \quad \vee \quad i=1(1) n$
iff $a_{i}=\frac{1}{n} \quad \vee i$ as $J=\sum_{i=1}^{n} a_{i}=n k$
Hence, $T=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ has the minimum variance among all linear UE \& of μ.
$\Leftrightarrow T=\bar{x}$ is the BLUE of μ.

Ex.1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n independent variables with common mean μ and variances $\sigma_{i}^{2}=v\left(x_{i}\right), i=1(1) n$. Find the BLUE of μ.
Solution: - To find an estimator T such that it has the minimum variance in the class $l=\left\{T: T=\sum_{i=1}^{n} a_{i} x_{i}, \sum_{i=1}^{n} a_{i}=1\right\}$ of all UES of μ.
Note that $\operatorname{Var}(T)=\sum_{i=1}^{n} a_{i}{ }^{2} \sigma_{i}^{2}$ cohere $\sum_{i=1}^{n} a_{i}=1$.
By $\mathrm{C}-3$ inequality,

$$
\begin{aligned}
& \text { By cos inequality, } \left.\sum_{i=1}^{n} a_{i} \cdot \sigma_{i} \cdot \frac{1}{\sigma_{i}}\right)^{n} \leq\left(\sum_{i=1}^{n} a_{i}{ }^{2} \sigma_{i}{ }^{2}\right)\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\right) \\
& \Rightarrow \sum_{i=1}^{n} a_{i}{ }^{2} \sigma_{i}^{2} \geqslant \frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}} \text {, as } \sum_{i=1}^{n} a_{i}=1
\end{aligned}
$$

Now, $\sum_{i=1}^{n} a_{i}=1, \sum_{i=1}^{n=1} a_{i}^{2} \sigma_{i}^{2}$ attains its minimum value of ' $=$ 'holds in cauchy - schwartz inequality, iff $a_{i} \sigma_{i} \propto \frac{1}{\sigma_{i}}$
iff $a_{i}=\frac{k}{\sigma_{i}{ }^{2}} \quad \forall i$
iff $a_{i}=\left(\frac{1}{\sigma_{i}^{2}}\right) /\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\right)$
Hence, $T=\frac{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \cdot x_{i}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}$ is the BLUE of μ,

$$
\begin{aligned}
{[\because 1} & =\sum_{i=1}^{n} a_{i}=k \cdot \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \\
& \left.\Rightarrow k=\frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}\right]
\end{aligned}
$$

Ex.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a wis. from a popple. with mean μ and variance σ^{2}. Suggest two UES based on all x_{i} 's and compare Their performances.
Solution:- Note that any weighted average of x_{i} 's is an VE of μ n^{n} based on all x_{i} 's.

$$
T=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum^{n} \omega_{i}} \text { is an UE of } \mu \text {. }
$$

(i) $T_{1}=\frac{1}{n} \sum_{i=1}^{n_{i=1}} x_{i}$
(ii) $T_{2}=\frac{\sum_{i=1}^{n} i x_{i}}{\frac{n(n+1)}{2}}$

$$
\begin{aligned}
& =\frac{4 \sigma^{2}}{\{n(n+1)\}^{2}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{2(2 n+1)}{3 n(n+1)} \cdot \sigma^{2}=\frac{\sigma^{2}}{n}\left(\frac{4 n+2}{3 n+3}\right)>\frac{\sigma^{2}}{n}
\end{aligned}
$$

Hence, T_{1} has smaller variance than T_{2} and T_{1} is better than T_{2}. Infect $T_{1}=\bar{x}$ is the BLUE of μ.

Method of finding Estimators: -
(I) Method of Moments : \sim [The substitution Principle]

One of the oldest and simplest method of estimation is the method of moments or the substitution principle. Let $f\left(x, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ be the PDF OF PMF of the given poplin. whose moments $\mu r^{\prime}, r=I(1) K$, exists. Then, in genera, $\mu_{r}{ }^{\prime}$ will be the function of $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$, wet $x_{1}, x_{2}, \ldots, x_{n}$ be a wis. from the given popln.
Define, $m_{n}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} X_{i} r$ as the $r^{\text {th }}$ order sample raw moment.

The method of moments consists in equating the k sample moments m_{r}^{\prime}, with the corresponding population moments μ_{r} ' and solving k equations for k unknowns

$$
\begin{aligned}
& \mu_{r^{\prime}}^{\prime}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)=m_{r^{\prime}}^{\prime}, r=1(1) k . \\
& \Rightarrow \theta_{i}=h\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{k}^{\prime}\right), i=1(1) k .
\end{aligned}
$$

Then, by method of moments,
$\hat{\theta}_{i}=h_{i}\left(m_{1}^{\prime}, \ldots ., m_{k}^{\prime}\right)$ is the required estimator $\theta_{i}, i=1(1) k$.
This method is quite reasonable if the sample is a good representation of the population.
Rational behind the Method of Moments: -
Note that $X_{i}{ }^{\prime} s$ are id $R V_{s}$.
$\Leftrightarrow X_{i}{ }^{r}$'s are ind RVs.
Hence, by Khinchin's WLLN,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{r} \xrightarrow{P} E\left(X_{1}^{r}\right) \text {, provided } \mu_{r}^{\prime}=E\left(X_{1}^{b}\right) \text { exists. }
$$

$\Leftrightarrow m_{r} \prime \xrightarrow{P} \mu_{r^{\prime}}^{\prime}$, provided $\mu_{r^{\prime}}^{\prime}$ exists.
Again, $E\left(m_{r}^{\prime}\right)=\mu_{r^{\prime}}$
$\Rightarrow m_{r}{ }^{\prime}$ is an UE of $\mu_{r^{\prime}}$.
It can be shown that, under general. conditions, m_{r} 'are asymptotically normal. Based on the above facts, we can eareate m_{r}^{\prime} to μ_{r}^{\prime}, quite reasonable.
Remankt Method of moments may lead to absurd estimators. "If we are asked to compute estimators of θ in $N(\theta, \theta)$ or, $N\left(\theta, \theta^{2}\right)$ by the method of moments, then we can verify this assertion.

Example:-
Leet $x_{1}, x_{2}, \ldots, x_{n}$ be a r, s. from $P(\lambda)$.
Note that, $E\left(x_{i}\right)=\lambda=V\left(x_{i}\right)$
By method of moments,

$$
\begin{aligned}
& \mu_{1}^{\prime}=m_{1}^{\prime} ; \mu_{2}^{\prime}=m_{2}^{\prime} \\
& \therefore \mu_{2}^{\prime}-\mu_{1}^{\prime}=m_{2}^{\prime}-m_{1}^{\prime} \\
& \Leftrightarrow \lambda=\bar{x} \text { and } \lambda=m_{2} \text { on s } s^{2} \\
& \Leftrightarrow \text { moments leads }+
\end{aligned}
$$

The method of moments leads to using either \bar{x} or s^{2}, as an estimator of λ.
To avoid ambiguity, we take the estimators involving the lowest order sample moments.
Ex.1. Let X_{i} 's be the res from Geometric (p) \& $i=1(1) n$. Find an MME of the parameter. Comment on the quality of estimator
Solution:-
By Method. of moments,

$$
\mu_{1}^{\prime}=\bar{x} \Rightarrow \frac{1}{p}=\bar{x}
$$

An MME of p is $p^{\wedge}=\frac{1}{\bar{x}}$
Note that, $0<\hat{p}=\frac{1}{\bar{x}} \leq 1$

$$
\Rightarrow \hat{p}=\frac{1}{\bar{x}} \hat{\epsilon} \Omega=(0,1)
$$

and $E(\hat{p})=E\left(\frac{1}{\bar{x}}\right)>\frac{1}{E(\bar{x})}=\frac{1}{1 / p}=p$.
$\Rightarrow \hat{p}$ is the unbiased estimator.
EX.2. Let x_{i} 's $(i=1(1) n)$ be a bis. from $B(\alpha, \alpha)$ of 1 st kind. Find an PIME of α and comment on the quality of the estimator.
Ex.3. Find the estimators for λ by the method of moments in the exponential distribution
[WBSO II]

Solution:-

$$
\begin{aligned}
f(x, \lambda) & =\frac{1}{\lambda} e^{-x / \lambda}, \\
& , \lambda>0, x
\end{aligned} \quad, \text { othercoise }
$$

For exponential distribution,

$$
\begin{aligned}
\mu_{1}^{\prime}=E(x) & =\int_{0}^{\infty} x \cdot \frac{1}{\lambda} e^{-x / \lambda} d x \\
& ={ }_{\lambda}
\end{aligned}
$$

Now, the sample moment m_{1}^{\prime} is given by

$$
m_{1}^{\prime}=\frac{1}{n} \sum x_{i}=\bar{x}
$$

Equating μ_{1}^{\prime} and m_{1}^{\prime}, we get

$$
\hat{\lambda}=\bar{x}
$$

(II) Method of Least Squares: - Leet $y=f\left(x, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ be the approximate regression equation of Y on X, which is assumed to be linear in parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$.
Let $\left(x_{i}, y_{i}\right), i=1(1) n$, be an observed data on (x, y). Define, $R_{i}=y_{i}-f\left(x_{i}, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ as the errors in the prediction. For a rios. $\left(x_{i}, y_{i}\right), i=1(1) n$, we assume that

$$
\begin{aligned}
& E_{i}=y_{i}-f\left(x_{i}, \theta_{1}, \ldots, \theta k\right) \\
& \sim N\left(0, \sigma^{2}\right), \text { where } \sigma^{2} \text { is }
\end{aligned}
$$

$\sim N\left(0, \sigma^{2}\right)$, where σ^{2} is constant.
Then the likelihood of the observed errors $e_{1}, e_{2}, \ldots, e_{n}$ is $L\left(e_{1}, \ldots, e_{n}: \theta_{1}, \ldots, \theta_{k}\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} e_{i}^{2}}$
The observed sample $\left\{\left(x_{i}, y_{i}\right): i=1(1)^{n}\right\}$ may be regarded as the most likely on most probable.
Hence the observed error $\left(e_{1}, l_{2}, \ldots, e_{n}\right)$ is also most probable.
Hence, we shall maximize the likelihood L w.r.t. $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ Now, maximizing L is equivalent to minimizing $\sum_{i=1}^{n} e i^{2}$

$$
=\sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)\right\}^{2}
$$

Hence, the principle of Least squares consist in minimizing The sum of squares of errors writ. the parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$.
It can be shown that the least squares estimates are It can solutions of $\frac{\partial}{\partial \theta_{i}} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}, \theta_{1}, \ldots, \theta_{k}\right)\right\}^{2}=0 \quad \forall i=1(1) k$.
Ex.1. If $y \sim N\left(\beta x_{i}, \frac{\sigma^{2}}{x_{i}}\right)$ when $x=x_{i}, i=1(1) n$, find the LSE of β based on the res. $\left(x_{i}, y_{i}\right)$.
Solution:- Here $y / x=x_{i} \sim N\left(\beta x_{i}, \frac{\sigma^{2}}{x_{i}}\right)$

$$
\Rightarrow E\left(Y / X=x_{i}\right)=\beta x_{i} \quad \forall i=1(1) n .
$$

Note, $R_{i}=Y_{i}-\beta x_{i} \sim N\left(0, \frac{\sigma^{2}}{x_{i}}\right)$, when $X=x_{i}$.

$$
\begin{aligned}
& \Rightarrow \text { Ri } \sqrt{x_{i}} \sim N\left(0, \sigma^{2}\right) \\
& \text { maximize } L=\frac{1}{-\frac{1}{2} \frac{\sum R i^{2}}{\sigma^{2} / x i}}
\end{aligned}
$$

To maximize $L=\frac{1}{\left(2 \pi \frac{\sigma^{2}}{x_{i}}\right)^{n / 2}} \cdot e$.
ie, to minimize $\sum_{i=1}^{n} e i^{2} x_{i}$,

Normal equation is : $\frac{\partial}{\partial \beta}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2} x_{i}\right\}=0$

$$
\begin{aligned}
& \Rightarrow 2 \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)\left(-x_{i}^{2}\right)=0 \\
& \Rightarrow \sum x_{i}^{2} y_{i}=\beta \sum x_{i}^{3} \\
& \Rightarrow \beta=\frac{\sum x_{i}^{2} y_{i}}{\sum x_{i}^{3}}
\end{aligned}
$$

Ex.2. When $X=x_{i}$, then $E\left(Y_{i}\right)=\beta x_{i}$ and $\operatorname{Var}\left(Y_{i}\right)=0,^{2} V i=1(1) n$,
$\overline{\overline{\text { Define }}} \hat{\beta}=\frac{\sum x_{i} y_{i}}{\sum x_{i}}$, show that $\sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2} \geqslant \sum_{i=1}^{n}\left(y_{i}-\hat{\beta} x_{i}\right)^{2}$
Also, show that $E(\hat{\beta})=\beta$ and $\operatorname{var}(\hat{\beta})=\frac{\sigma^{2}}{\sum x_{i}^{2}}$. If each y_{i} follows normal distribution, sit. $\hat{\beta}$ is a normal variable.
Solution: - Here $E\left(y / X=x_{i}\right)=\beta x_{i}$. Then $e_{i}=y_{i}-\beta x_{i} \quad \forall i=1(1) \eta$. By method of least squares, to minimize

$$
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2} \text { w.r.t. } \beta \text {, }
$$

Normal equation is : $\frac{\partial}{\partial \beta} \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2}=0$

$$
\Rightarrow \beta=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\hat{\beta}
$$

Hence, $\sum\left(y_{i}-\beta x_{i}\right)^{2}$ is minimum when $\beta=\hat{\beta}$.

$$
\begin{aligned}
& \Rightarrow \sum\left(y_{i}-\beta x_{i}\right)^{2} \geqslant \sum\left(y_{i}-\hat{\beta} x_{i}\right)^{2} \\
& E(\hat{\beta})=E\left(\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}\right)=\frac{\sum x_{i} E\left(y_{i}\right)}{\sum x_{i}^{2}}=\frac{\sum x_{i} \cdot \beta x_{i}}{\sum x_{i}^{2}}=\beta . \\
& \text { and } V(\hat{\beta})=V\left(\frac{\sum x i y_{i}}{\sum x i^{2}}\right)=\frac{\sum x i^{2} \gamma\left(y_{i}\right)}{\left(\sum x_{i}^{2}\right)^{2}}=\frac{\sigma^{2}}{\sum x_{i}^{2}}
\end{aligned}
$$

Note that, $\hat{\beta}=\sum_{i=1}^{n}\left(\frac{x_{i}}{\sum x_{i}^{2}}\right) y_{i}$ is a linear combination of normal variables $y_{i}, i=1(1)^{n}$.
Hence, $\quad \hat{\beta} \sim N(E(\hat{\beta}), V(\hat{\beta})) \Rightarrow \hat{\beta} \sim N\left(\beta, \frac{\sigma^{2}}{\sum x i^{2}}\right)$

$$
[Q, E, D \cdot]
$$

Statistical Inference II.
Point Estimation (Continuation): -

- Measure of Quality of Estimator or Properties of Good Estimator:-

It is clear that in any given problem of estimation, we may have a large, often infinitely many estimators to choose from. Here, we shall define certain properties or measures of quality of estimating to get a good estimator:
(I) Closeness : Minimum MSE
(II) Consistency
(III) Sufficiency
(IV) Completeness.
(I) Closeness:~ Clearly, coed like estimator $T(\underset{\sim}{x})=T$ to be close to θ and since T is a statistic, the usual measure of closeness $|T-\theta|$ is a R.v.
Example of such measure of closeness are:
(i) $P_{\theta}[|T-\theta|<\epsilon]$, for some $\epsilon>0$.
(ii) $E_{\theta}|T-\theta|^{r}$, for some $r>0$
obviously, we want (i) to be large and (ii) to be small.
Definition: More concentrated and Most concentrated Estimators:
Let Wand T^{*} be two estimators of θ. Then T^{*} is called a more concentrated estimator of θ than T if

$$
P_{\theta}\left[\left|T^{*}-\theta\right|<\epsilon\right] \geqslant P_{\theta}[|T-\theta|<\epsilon]
$$

for all $\epsilon>0$, for each $\theta \in \Omega$.
An estimator T_{0} is called most concentrated estimator of θ iff it is more concentrated than any other estimator, that is if

$$
P_{\theta}\left[\left|T_{0}-\theta\right|<\epsilon\right] \geqslant P_{\theta}[|T-\theta|<\epsilon] \stackrel{\theta-\epsilon \quad \theta \quad \theta+\epsilon}{\square} t
$$

for all T, for all $\in>0$, for each $\theta \in \Omega$.
Unfortunately, most concentrated estimators seldom exist.

Mean Square Error (MSE): A useful, though perhaps, a crude measure of closeness of an estimator T of θ is $E(T-\theta)^{2}$ which is obtained from (ii) by putting $r=2$.
Notation: $M S E_{\theta}(T)=E\{T-\theta\}^{2}$
Naturally. we coould prefer one coith small or smallest MSE. Here, the requirement is to choose to such that $M S E_{\theta}\left(T_{0}\right) \leq M S E_{\theta}(T)$, for all T, for each $\theta \in \Omega$.
But such estimators rarely exist.
Note that, $\operatorname{MSE} \theta(T)=\operatorname{Var}(T)+\{E(T)-\theta\}^{2}$
Now, we shall concentrate on the class of all estimators of θ such that $\{E(T)-\theta\}^{2}=0 \Leftrightarrow E(T)=\theta \quad \forall \theta \in \Omega$.
NoLo, in the class of unbiased estimators of θ, we shall find an estimator with uniformly minimum raniance. This is the concept of unbiasedness and minimum variance.
Definitions:-
(1) An estimator T is said to be unbiased estimator of a parametric function $\psi(\theta)$ if $E\{T\}=\psi(\theta) \forall \theta \in \Omega$.
(2) An estimator T_{0} is defined to be UMVUE of $\psi(\theta)$ if
i) $E\left(T_{0}\right)=\psi(\theta) \forall \theta \in \Omega$
ii) $\operatorname{var}\left(T_{0}\right) \leq \operatorname{Var}(T)$, for any estimator T such that $E(T)=\psi(\theta) \forall \theta \in \Omega$.
(3) A parametric function $\mathcal{}(\theta)$ is said to be estimable C on, unbiasedly estimable) iff there exists an estimator T such that $E(T)=\psi(\theta) \forall \theta \in \Omega$. ensures poor estimation. Suppose T is an unbiased estimation of θ. Further assume that the sampling distribution of T is extremely positively skewed, i.e. θ lies on the right tail of the sampling distribution. If we regard an observed I. that is an estimate to be likely Then the estimate
*. should fall close to the mode of the distribution and hence it should not be close to θ. This situation is quite' natural since minimisation of MSE ensures the simultaneous minimisation of the bias and variance of the sampling distribution of the statistic.
(II) Consistency:-
Here we shall consider a large sample property of estimators. Define, $T_{n}=T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where n indicates the sample size, as an estimator of θ. Actually, we will be considering a sequence of estimators:
$T_{1}=T\left(x_{1}\right), T_{2}=T\left(x_{1}, x_{2}\right), \cdots \cdots \cdot$
e.g. $T_{n}=\frac{1}{n} \sum_{i=1}^{n} T\left(x_{i}\right)$

As the sample size $n \rightarrow \infty$, the data $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are practically the cohole population and it is intuitively appealing to desire that a good sequence of estimators $\left\{T_{n}\right\}$ should be one for which
values of the estimator tend to concentrate near θ as the sample size increases. If $n \rightarrow \infty$, and the values of an estimator are not very close to θ, i.e. The performance of the estimatorsis not good, then the performance of the estimator will be bad in case the sample size is small. Hence, for $n \rightarrow \infty$, if $\left\{T_{n}\right\}$ tends to concentrate near θ, then in small sample the estimator Tn may perform well and we say that the sequence $\left\{T_{n}\right\}$ of estimator? is consistent or appropriate for θ.
Defn. : - The sequence $\left\{T_{n}\right\}$ of estimators is defined to be consistent sequence of estimators of Q, if, for every $\epsilon>0$,
$P\left[\left|T_{n}-\theta\right|<\epsilon\right] \rightarrow 1$ as $n \rightarrow \infty$, for every $\theta \in \Omega$.
Remark: - $\left\{T_{n}\right\}$ is consistent for θ iff $P\left[\left|T_{n}-\theta\right|>E\right] \rightarrow 0$ as $n \rightarrow \infty$ $\Leftrightarrow \operatorname{Tn} \xrightarrow{P} \theta$, for every $\theta \in \Omega$.
Ex.(1) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from a population with $E\left|X_{1}\right|^{k}<\infty$. Then show that m_{r}^{\prime} is consistent for $\mu_{1}^{\prime} ; r=1(1) k$
Solution:- - Khinchinte's WLLN:-
If $\left\{x_{n}\right\}$ is a sequence of rid RV's, then $\bar{x} \xrightarrow{P} \mu$, provided $\mu=E\left(x_{1}\right)$ exists.]
Here $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d. R.r.'s.
$\Rightarrow X_{i}^{r} n^{\prime} s$ are i.i.d. RY's with $E\left|X_{i}^{r}\right|<\infty$
$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i}^{n}=m_{r}^{\prime} \xrightarrow{P} E\left(x_{i}^{r}\right) \quad \forall r=1(1) k$, by khinchinte's WLLN.

$$
\Rightarrow m_{r}^{\prime} \xrightarrow{p} \mu_{r}^{\prime} \quad, r=1(1) k
$$

$\therefore m_{n}^{\prime}$ is consistent for $\mu_{r^{\prime}}, r=1(1) k$.

Ex.(2). If $x_{1}, x_{2}, \ldots, x_{n}$ be a $r .8$. from $N\left(M, \sigma^{2}\right)$, ST.
$s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is consistent for σ^{2}.
Ans:-
Note that $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$

$$
\Rightarrow E\left(\frac{(n-1) s^{2}}{\sigma^{2}}\right)=n-1
$$

and $\operatorname{Var}\left(\frac{(n-1) s^{2}}{\sigma^{2}}\right)=2(n-1)$

$$
\begin{aligned}
& \Rightarrow E\left(S^{2}\right)=\frac{\sigma^{2}(n-1)}{(n-1)}=\sigma^{2} \\
& \text { and } \operatorname{Van}\left(s^{2}\right)=\frac{2 \sigma^{4}}{n-1} .
\end{aligned}
$$

For every $\epsilon>0$,

$$
\begin{aligned}
& \quad 0 \leq P\left[\left|s^{2}-\sigma^{2}\right|>\epsilon\right]<\frac{V\left(s^{2}\right)}{\epsilon^{2}}=\frac{2 \sigma^{4}}{(n-1) \epsilon^{2}} \longrightarrow 0 \text { as }{ }^{\epsilon}>0, \\
& \Rightarrow \\
& \lim _{n \rightarrow \infty} P\left[\left|s^{2}-\sigma^{2}\right|>\epsilon\right]=0
\end{aligned}
$$

Hence, s^{2} is consistent for σ^{2}.
Remark: - If $\left\{T_{n}\right\}$ is consistent for θ, then
(i) $\left\{T_{n}+a_{n}\right\}$ is also consistent for θ, provided $a_{n} \rightarrow 0$ as $n \rightarrow \infty$
(ii) $\left\{b_{n} \cdot T_{n}\right\}$ is also consistent for θ, provided $b_{n} \rightarrow 1$ as $n \rightarrow \infty$.
For $e>0$,

\[

\]

Therefore, it is possible to find several consistent estimators of θ, provided there exists a consistent estimator of θ.
(iii) Concept of Consistency of an estimator:-

Consistency is a large property of an estimator. The estimator is said to be consistent if it estimates the population parameter or some other function of the parameters almost correctly even when the sample size is large.

Ex.(3):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $u(0, \theta), \theta>0$. Which of the following estimators are consistent for θ ?
(i) $T_{1}=\max _{i}\left\{\boldsymbol{x}_{i}\right\}$,
(ii) $T_{2}=\frac{n+1}{n} T_{1}$,
(iii) $T_{3}=2 \bar{x}$.

Ans:- (i)

$$
F_{T_{1}}\left(t_{1}\right)=\left\{\begin{array}{cl}
0, & t_{1} \leq 0 \\
\left(\frac{t_{1}}{\theta}\right)^{n}, & 0<t_{1}<\theta \\
1, & t_{1} \geqslant \theta
\end{array}\right.
$$

Now,

$$
\begin{aligned}
P\left[\left|T_{1}-\theta\right|<\epsilon\right] & =P\left[\theta-\epsilon<T_{1}<\theta+\epsilon\right] \\
& =F_{T_{1}}(\theta+\epsilon)-F_{T_{1}}(\theta-\epsilon) \\
& =\left\{\begin{array}{cc}
1-\left(\frac{\theta-\epsilon}{\theta}\right)^{n} ; & \text { if } 0<\epsilon<\theta \\
1 \quad ; & \text { if } \epsilon \geqslant \theta
\end{array}\right. \\
& \longrightarrow 1 \text { as } n \rightarrow \infty, \text { for every } \in>0 .
\end{aligned}
$$

Hence T_{1} is consistent for θ.
(ii)

$$
\begin{aligned}
T_{2} & =\frac{n+1}{n} T_{1} \\
& =b_{n} T_{1} \text {, where } b_{n}=\frac{n+1}{n} \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

clearly, T_{n} is consistent for θ, since for every $\epsilon>0$,

$$
\begin{aligned}
& P\left[\left|T_{2}-\theta\right|<\epsilon\right] \\
= & P\left[\left|\frac{n+1}{n} T_{1}-\theta\right|<\epsilon\right] \\
\approx & P\left[\left|T_{1}-\theta\right|<\epsilon\right], \text { for large. } \\
\longrightarrow & 1 \text { as } n \rightarrow \infty .
\end{aligned}
$$

(iii) Note that, $E(\bar{X})=E\left(X_{1}\right)=\frac{\theta}{2}$

$$
f r(\bar{x})=\frac{v\left(x_{1}\right)}{n}=\frac{\theta^{2}}{12 n}
$$

For every $\epsilon>0, P\left[\left|T_{3}-\theta\right|>\epsilon\right]$

$$
\begin{aligned}
&=P[|2 \bar{x}-\theta|>\epsilon] \\
&<\frac{V(2 \bar{x})}{\epsilon^{2}}=\frac{4 V(\bar{x})}{\epsilon^{2}}=\frac{4 \times \theta^{2}}{12 n \epsilon^{2}} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

So, T_{3} is consistentfon θ.

A sufficient condition for consistency:-
The direct verification of consistency from the definition may not always be an easy task. The following theorem helps in determining the consistency of $\{T n\}$ for θ.
Theorem:- If $\left\{T_{n}\right\}$ is a sequence of estimators such that

$$
\begin{aligned}
& \text { If } T_{n} g \text { is a sequence } V\left(T_{n}\right) \rightarrow \theta \text { and } V \rightarrow \infty \text {. } \\
& E\left(T_{n}\right) \text {. }
\end{aligned}
$$

Then $\left\{T_{n}\right\}$ is consistent for θ.
Proof:- For $\in>0$,

$$
\begin{aligned}
0 \leq P\left[\left|T_{n}-\theta\right|>\epsilon\right] & <\frac{E\left(T_{n}-\theta\right)^{2}}{\epsilon^{2}} \\
& =\frac{V\left(T_{n}\right)+\left\{E\left(T_{n}\right)-\theta\right\}^{2}}{\epsilon^{2}} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

provided $E\left(T_{n}\right) \rightarrow \theta$ and $V\left(T_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
[Markov's inequality: $\left.P[|x|>\epsilon]<\frac{E|x|^{r}}{\epsilon^{r}}, \epsilon>0, n>0\right]$
Remark:- The above theorem can also be stated as follocos:

- If $\left\{T_{n}\right\}$ is a sequence of estimators such that $E\left(T_{n}-\theta\right)^{2}$ $\longrightarrow 0$ as $n \rightarrow \infty$, then $\left\{T_{n}\right\}$ is consistent for θ :"
Ex.(4). Let $x_{1}, x_{2}, \ldots, x_{n}$ be gins. from a poplin with mean μ and variance p^{2}. Which of the following estimators are consistent for μ ?
(i) $T_{1}=\frac{2}{n(n+1)} \sum_{i=1}^{n} i . x_{i}$
(ii) $T_{2}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{\frac{n}{2}}$
(ii) $T_{3}=\frac{6 \sum_{i=1}^{n} i^{2} \cdot x_{i}}{n(n+1)(2 n+1)}$

$$
\begin{array}{rlrl}
\text { Sod n: }:- \\
E\left(T_{1}\right) & =E\left\{\frac{2 \sum_{i=1}^{n} i \cdot x_{i}}{n(n+1)}\right\} & \operatorname{Var}\left(T_{1}\right) & =\operatorname{var}\left\{\frac{2}{n(n+1)} \sum_{i=1}^{n} i \cdot x_{i}\right\} \\
& =\frac{2}{n(n+1)} \sum_{i=1}^{n} i \sigma^{2}(i) & & =\frac{4}{\{n(n+1)\}^{2}} \sum_{i=1}^{n} i^{2} \cdot \sigma^{2} \\
& =\frac{2}{n(n+1)}\left(\sum_{i=1}^{n} i\right) \mu & & =\frac{4 \sigma^{2} n(n+1)(2 n+1)}{6 n^{2}(n+1)^{2}} \\
& =\mu & & =\frac{2 \sigma^{2}(2 n+1)}{3 n(n+1)} \\
& & \longrightarrow 0 \text { as } n \rightarrow \infty
\end{array}
$$

Hence, T_{1} is consistent for μ.
(ii)

$$
\begin{aligned}
& E\left(T_{2}\right)=\frac{n \mu}{n / 2}=2 \mu \\
\Rightarrow & E\left(T_{2}\right) \nrightarrow \mu
\end{aligned}
$$

$$
\text { but } E\left(\frac{T_{2}}{2}\right)=\mu
$$

$\therefore T_{2}$ is not consistent for μ.
(iii)
$\therefore T_{3}$ is consistent for μ.
EX.(5). Let $X_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U(\theta, \theta+1)$. S.T.
(i) $T_{1}=\bar{x}-\frac{1}{2}$, (ii) $T_{2}=X_{(n)}-\frac{n}{n+1}$ are both consistent for θ.

Ans:-

$$
\begin{aligned}
& E(\bar{x})=E\left(x_{1}\right)=\theta+\frac{1}{2} \\
& \Rightarrow E\left(T_{1}\right)=\theta, \\
& V(\bar{x})=\frac{\sigma^{2}}{n}=\frac{1}{12 n} \\
& \Rightarrow V\left(T_{1}\right)=\frac{1}{12 n} \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

$\therefore T_{1}$ is consistent for θ.

$$
\begin{aligned}
& E\left(T_{3}\right)=E\left\{\frac{6 \sum_{i=1}^{n} i^{2} \cdot x_{i}}{n(n+1)(2 n+1)}\right\}=\frac{6 \mu}{n(n+1)(2 n+1)} \sum_{i=1}^{n} i^{2} \\
& =\mu \\
& \operatorname{Var}\left(T_{3}\right)=\frac{6 \sigma^{2}}{n(n+1)(2 n+1)} \sum_{i=1}^{n} i^{4} \quad\left[\frac{1}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4} \simeq \int_{0}^{1} x^{4} d x=\frac{1}{s},\right. \\
& =\frac{36 \cdot 2^{n^{3}} \cdot \sigma^{2}}{52^{2 /}(n+1)^{2}(2 n+1)^{2}} \\
& \Rightarrow \sum_{i=1}^{n} i^{4}=\frac{n^{5}}{5} \\
& \text { (OR), } \left.\sum_{i=1}^{i=1} i^{4} \simeq \int_{0}^{n} x^{4} d x=\frac{n^{5}}{5}\right]
\end{aligned}
$$

Ex,(6). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U(0, \theta)$. SiT. $G=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$ is consistent for θ / e.
ANS:-

$$
\begin{aligned}
E(G) & =E\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \\
& =E\left\{\prod_{i=1}^{n}\left(x_{i}\right)^{1 / n}\right\} \\
& =\prod_{i=1}^{n} E\left(x_{i}^{1 / n}\right) \\
& =\prod_{i=1}^{n}\left\{\int_{0}^{\theta} x_{i}^{1 / n} \cdot \frac{1}{\theta} d x_{i}\right\} \\
& =\prod_{i=1}^{n}\left[\frac{x_{i}{ }^{1 / n+1}}{1 / n+1}\right]_{0}^{\theta} \cdot \frac{1}{\theta} \\
& =\prod_{i=1}^{n}\left\{\frac{n\left(\theta^{1 / n}\right)}{n+1}\right\}^{\theta} \\
& =\frac{\theta}{\left(1+\frac{1}{n}\right)^{n}}\left[\because x_{i}^{\prime} s \text { are } i \cdot i \cdot d \cdot R v^{\prime} s\right] \\
V(G) & =E\left(G^{2}\right)-E^{2}(G) \\
& =\left\{\frac{1}{\theta} \cdot \frac{\theta^{2 / n}+1}{1+2 / n}\right\}^{n}-\left\{\frac{\theta}{\left(1+\frac{1}{n}\right)^{n}}\right\}^{2} \\
& =\frac{\theta^{2}}{\left(1+\frac{2}{n}\right)^{n}-\frac{\theta^{2}}{\left(1+\frac{1}{n}\right)^{2 n}}} \\
& \xrightarrow{\theta^{2}} \frac{\theta^{2}}{e^{2}}=0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, G is consistent for $\frac{\theta}{l}$.
EX.(7). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $N\left(0, \sigma^{2}\right)$, S.T. some multiple of $\sum_{i=1}^{n}\left|x_{i}\right|$ is consistent for σ.
ANS:-

$$
\begin{aligned}
& E\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)=\sum_{i=1}^{n} E\left|x_{i}\right|=n \cdot \sigma \cdot \sqrt{\frac{2}{\pi}} \\
& \Rightarrow E\left(\frac{1}{n} \cdot \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|\right)=\sigma \\
& \Rightarrow E\left(T_{1}\right)=\sigma, \text { where } T_{1}=\frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(T_{1}\right) & =\frac{\pi}{2 n^{2}} \sum_{i=1}^{n}\left\{E\left(x i^{2}\right)-n^{2} \cdot \sigma^{2} \cdot \frac{2}{\pi}\right\} \\
& =\frac{\pi}{2 n^{2}} \sum_{i=1}^{n}\left\{\sigma^{2}-n^{2} \cdot \sigma^{2} \cdot \frac{2}{\pi}\right\} \\
& =\frac{\pi}{2 n} \sigma^{2}\left(1-\frac{2 n^{2}}{\pi}\right) \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence $T_{1}=\frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|$ is consistent for P.
Remark:- We have the theorem:
"If $\left\{T_{n}\right\}$ is a sequence of estimators such that $E\left(T_{n}-\theta\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$, then $\left\{T_{n}\right\}$ is consistent for θ."
"The converse of the theorem is not necessarily true", i.e. we have situations cover $T_{n} \xrightarrow{P} \theta$ but $E\left(T_{n}-\theta\right)^{2} \nrightarrow 0$ as $n \rightarrow \infty$.

For example:-

$$
T_{n}=\left\{\begin{array}{cc}
\theta & \text { with probability }\left(1-\frac{1}{n}\right) \\
\theta+n & \text { with probability } \frac{1}{n}
\end{array}\right.
$$

$$
\text { Now, } p\left[\left|T_{n}-\theta\right|>\epsilon\right]
$$

$$
=P\left[T_{n}=\theta+n\right]
$$

$$
=\frac{1}{n} \rightarrow 0 \text { ass } n \rightarrow \infty
$$

$$
\Rightarrow \operatorname{Tn} \xrightarrow{P} \theta
$$

But, $E\left(T_{n}-\theta\right)^{2}=(\theta-\theta)^{2} \cdot\left(1-\frac{1}{n}\right)+(\theta+n-\theta)^{2} \cdot \frac{1}{n}$

$$
=\frac{n^{2}}{n}=n \rightarrow 1 \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence, $\operatorname{Tn}_{n} \xrightarrow{P} \theta$ but $E\left(T_{n}-\theta\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$.

Invariance Property:- If $\left\{T_{n}\right\}$ is consistent for θ and $\psi(\cdot)$ is a continuous function, then $\{\Psi(T n)\}$ is consistent for $\psi(Q)$.
Proof:- Here $\psi(H)$ is continuous function. Hence for a given $\in>0$. There exists a $\delta>0$, such that

$$
\begin{aligned}
& \text { mists a } \delta>0 \text {, such } \text {. }\left|T_{n}-\theta\right|<\delta \text {. } \text {. }\left|\Psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\left(T_{n}\right)-\psi(\theta) \mid<\epsilon ? ~
\end{aligned}
$$

Clearly. $\left\{\left|T_{n}-\theta\right|<\delta\right\} \subseteq\left\{\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right\}$

$$
\Rightarrow P\left\{\left|T_{n}-\theta\right|<\delta\right\} \leq P\left\{\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right\}
$$

$A S\left\{T_{n}\right\}$ is consistent for θ,

$$
\begin{aligned}
& \text { As }\left\{T_{n}\right\} \text { is consistent pr } \\
\therefore 1 & =\lim _{n \rightarrow \infty} P\left[\left|T_{n}-\theta\right|<\delta\right] \leq \lim _{n \rightarrow \infty} P\left[\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right] \leq 1 \\
& \Rightarrow \lim _{n \rightarrow \infty} P\left[\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right]=1
\end{aligned}
$$

$\Rightarrow\left\{\psi\left(T_{n}\right)\right\}$ is consistent for $\Psi(\theta)$.
Ex.(8). If $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from Bernoulli distr. with prob. of success p. Show that \rightarrow (i) $\frac{\bar{x}}{}$ is consistent for p,
(ii) $\bar{x}(1-\bar{x})$ is consistent for $p(1-p)$.

Solo. : i)

$$
\begin{aligned}
& \quad \sum X_{i} \sim \operatorname{Bin}(n, p) \\
& E(\bar{x})=E\left(x_{1}\right)=p \\
& V(\bar{x})=\frac{V\left(x_{1}\right)}{n}=\frac{p(1-p)}{n} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

$$
=v\left(x_{1}\right)
$$

Hence, \bar{x} is consistent for p.
ii) Here $\psi(p)=p(1-p)=V\left(x_{1}\right)$ is a continuous function as $p(1-p)$ is a polynomial in p.
By invariance property,
$\psi(\bar{x})=\bar{x}(1-\bar{x})$ is consistent for $\psi(p)=p(1-p)$.
Ex.(9). Let $x_{1}, x_{2}, \ldots, x_{n}$ is a res. from $\operatorname{Bin}(1, p)$. Suggest consistent estimators of (i) e^{-p}, (ii) p^{2}, (ii) $\sin p$, (ii) $-\ln p$.

Ex.(10). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N(\mu, \mu), \mu>0$.
(a) Find a consistent estimator of μ^{2}. Is it unbiased?
(b) Find out an UE which is consistent ?

Sols.:-

$$
\begin{aligned}
& \text { (a) } \bar{X} \sim N\left(\mu, \frac{\mu}{n}\right) \\
& \Rightarrow E(\bar{X})=\mu \\
& v(\bar{X})=\frac{\mu}{n} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence \bar{x} is consistent for μ.
By invariance property, \bar{x}^{2} is consistent for μ^{2}.
But, $E\left(\bar{x}^{2}\right)=v(\bar{x})+E^{2}(\bar{x})$

$$
=\frac{\mu}{n}+\mu^{2} \neq \mu^{2}[\because x i \stackrel{i d}{\sim} N(\mu, \mu)]
$$

i.e. \bar{x}^{2} is biased for μ^{2}.
(b) In a normal sample, \bar{x} and s^{2} are independently distributed.

Also, $E(\bar{x})=\mu$ and $E\left(s^{2}\right)=\mu$.
Hence, $E\left(\bar{X} \cdot S^{2}\right)=E(\bar{X}) \cdot E\left(S^{2}\right)$, due to independence.

$$
=\mu^{2}
$$

and $\quad \operatorname{tar}\left(\bar{x} \cdot s^{2}\right)=E\left(\bar{x} \cdot s^{2}\right)^{2}-E^{2}\left(\bar{x} \cdot s^{2}\right)$

$$
\begin{aligned}
& =E\left(\bar{x}^{2} \cdot s^{4}\right)-\mu^{4} \\
& =E\left(\bar{x}^{2}\right) \cdot E\left(s^{4}\right)-\mu^{4} \\
& =\left\{\gamma(\bar{x})+E^{2}(\bar{x})\right\} \cdot\left\{V\left(s^{2}\right)+E^{2}\left(s^{2}\right)\right\} \\
& =\left\{\frac{\mu}{n}+\mu^{2}\right\}\left\{\frac{2 \mu^{2}}{n-1}+\mu^{2}\right\}-\mu^{4} \\
& \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, $\bar{X} \cdot s^{2}$ is consistent as welles unbiased for μ^{2}.
Remark:- In Ex .(10) (the above example)
(a) is an example of a biased consistent estimator.
(b) is an example of an unbiased consistent estimator.

Ex. (II). Give an example of an estimator cohich is
(i) consistent but not unbiased,
(ii) unbiased but not consistent,
(iii) Consistent as well as unbiased.

Ans:- (i) Lett $T_{1}=\bar{x}+\frac{1}{n}$
Clearly, $T_{1}=\bar{x}+\frac{1}{n}$ is consistent but

$$
E\left(T_{1}\right)=\mu+\frac{1}{n} \neq \mu
$$

So, it is not unbiased.
[If $\left\{T_{n}\right\}$ is consistent for θ, The $\left\{T_{n}+a_{n}\right\}$ is
(ii) Note that, $T=\frac{x_{1}+x_{n}}{2}$ is an unbiased estimator of μ.

$$
T \sim N\left(\mu, \sigma^{2} / 2\right)
$$

Now, $P[|T-\mu|<\epsilon]=P\left[\left|\frac{T-\mu}{\sigma / \sqrt{2}}\right|<\frac{\epsilon \sqrt{2}}{\sigma}\right]$

$$
\begin{aligned}
& =2 \Phi\left[\frac{\epsilon \sqrt{2}}{\pi}\right]-1 \\
& \\
& \neq 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, T is unbiased but not consistent for μ.
(ii.) Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbs. from $N\left(\mu, \sigma^{2}\right)$
then $\bar{x} \sim N\left(\mu, \sigma^{2} / n\right)$.
$-E(\bar{x})=\mu, V(\bar{x})=\frac{\sigma^{2}}{n} \rightarrow 0$ as $n \rightarrow \infty$
$\Rightarrow \bar{x}$ is consistent as well as unbiased.
Ex.(12). Show that for a res. from cauchy distribution with location parameter μ, ire, $C(\mu, 1)$, the sample mean is not consistent for μ but the sample median is consistent for μ.
Ans:- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r from $C(\mu, 1)$.
Then $\bar{x} \sim c(\mu, 1)$
Now, $P[|\bar{x}-\mu|<\epsilon]=P[\mu-\epsilon<\bar{x}<\mu+\epsilon]$

$$
\begin{aligned}
& =\int_{\mu-\epsilon} \frac{d \bar{x}}{\pi\left\{1+(\bar{x}-\mu)^{2}\right\}} \\
& =\left[\frac{1}{\pi} \tan ^{-1}(\bar{x}-\mu)\right]_{\mu-\epsilon}^{\mu+\epsilon} \\
& =\frac{2}{\pi} \tan ^{-1} \epsilon \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence \bar{x} is not consistent for μ.

It can be shown that for large samples

$$
\xi_{p}^{\wedge} \stackrel{a}{\sim} N\left(\xi_{p}, \frac{P(1-p)}{n \cdot f^{2}\left(\xi_{p}\right)}\right)
$$

where, $f(\cdot)$ is the PDF of the distribution.
For, $c(\mu, 1)$ distribution, $\xi_{1 / 2} \sim N\left(\xi_{1 / 2}, \frac{1}{4 n f^{2}(\mu)}\right)$

$$
\Rightarrow \tilde{x} \stackrel{a}{ } N\left(\mu, \frac{\pi^{2}}{4 n}\right)\left[\because f(\mu)=\frac{1}{\pi}\right]
$$

Hence, for large $n, E(\tilde{x})=\mu$,

$$
\begin{aligned}
& \quad V(\tilde{x})=\frac{\pi^{2}}{4 n} \rightarrow 0 \text { as } n \rightarrow \infty \\
& \Rightarrow \tilde{x}\left(\xi_{1 / 2}\right) \text { is consistent for } \mu .
\end{aligned}
$$

Remark:- By khinchinte's WLLN: $\bar{x} \xrightarrow{P} \mu$, provided $E\left(x_{1}\right)=\mu$,

 the population mean eseists. In Cauchy population, the poplin mean does not exist and μ is not the poplin mean but it is the poplin. median. Hence for μ, \bar{x} is not conséstent, but \tilde{x} is consistent? Ex. (13). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from the poplin with PDF$$
f(x ; \theta)= \begin{cases}e^{-(x-\theta)} & \text { if } x>\theta \\ 0 & \text { ow }\end{cases}
$$

Show that $X_{(1)}$ is consistent for θ.
ANS:- $\quad f_{X_{(1)}}(x)=n\left[1-\int_{\theta}^{x} e^{-(x-\theta)} d x\right]^{n-1} \cdot e^{-(x-\theta)} ; x>\theta$

$$
=n\left[1+e^{-(x-\theta)}-1\right]^{n-1} \cdot e^{-(x-\theta)}
$$

$$
=n e^{-n(x-\theta) ;} x>\theta \quad \theta+\epsilon
$$

$P\left[\left|X_{(1)}-\theta\right|<\epsilon\right]=P\left[\theta<X_{(1)}<\theta+\epsilon\right]=n \int_{\theta}^{\theta+\epsilon} e^{-n(x-\theta)} d x$

$$
=n e^{n \theta}\left[\frac{e^{-n x}}{-n}\right]_{\theta}^{\theta+\epsilon}
$$

$$
=1-e^{-n \epsilon}
$$

$$
\longrightarrow 1 \text { as } n \rightarrow \infty
$$

$\therefore X_{(1)}$ is consistent for θ.

Ex, (14). If x_{1}, \ldots, x_{n} be a res. from $f(x)=\frac{1}{2}(1+\theta x)$; $-1<x<1,-1<\theta<1$. Find a consistent estimator of θ.
(ISL)
Solution:- $f(x)=\frac{1}{2}(1+\theta x) I-1<x<1$

$$
\therefore E(X)=\frac{1}{2} \int_{-1}^{1}(1+\theta x) x d x=\frac{\theta}{3}
$$

Now, $E(\bar{x})=\frac{1}{n} \sum_{i=1}^{n} E\left(x_{i}\right)=\theta / 3$

$$
\Rightarrow E(3 \bar{x})=\theta
$$

Now, $E\left(x^{2}\right)=\frac{1}{2} \int_{-1}^{1} x^{2}(1+\theta x) d x=\frac{1}{2} \int_{-1}^{1}\left(x^{2}+\theta x^{3}\right) d x=\frac{1}{3}$

$$
\begin{aligned}
\therefore V(X) & =E\left(x^{2}\right)-E^{2}(X) \\
\Rightarrow V(x) & =\frac{1}{3}-\frac{\theta^{2}}{9} \\
V(\bar{X}) & =\frac{1}{n^{2}} \cdot n\left(\frac{1}{3}-\frac{\theta^{2}}{9}\right)=\frac{1}{n}\left(\frac{1}{3}-\frac{\theta^{2}}{9}\right) \\
\therefore \operatorname{lt}_{n \rightarrow \infty} V(3 \bar{x}) & =9 \operatorname{Lt}_{n \rightarrow \infty} V(\bar{x})=9 \operatorname{Lim}_{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{3}-\frac{\theta^{2}}{9}\right)=0
\end{aligned}
$$

$\therefore 3 \bar{x}$ is a consistent estimator of θ.
$E x_{1}(15):$

Introduction:-In the problem of statistical inference, the raw data collected from the field of enquiry is too numerous and hence too difficult to deal with and too costly to stare. So, a statistician could like to condence the data by determining a function of the sample observation, i.e. by forming a statistic. Here, the condensation should be done in a manner so that there is 'no loss of information' regarding the popin feature of interest. The statistic which exhaust all the relevant information about the labelling parameter, that contained in the sample ane called sufficient statistics and these notion is termed as sufficiency principle. Clearly, sufficiency is an essential criterion of an inferential problem.
Consider the following example :
Let $x_{1}, x_{2}, \ldots, x_{n}$ be an. s. from $N(\mu, 1), \mu$ is conknocon.
Apply the orthogonal transformation

$$
y=A x \text { with }\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right) \text { as the first row of } A \text {. }
$$

Then $Y_{1}=\sqrt{n} \bar{x} \sim N(\sqrt{n} \mu, 1)$ and $Y_{i} \sim N(0,1), i=2(1) n$, independently.
To estimate μ, we can use $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or $Y_{1}=\sqrt{n} \bar{x}$, since $Y_{2}, Y_{3}, \ldots, Y_{n}$ provide no information about μ.
clearly, $Y_{1}=\sqrt{n} \bar{X}$ is preferable, since we need not to keep the record of all observations.

Any estimation of the parameter based on $Y_{1}=\sqrt{n} \bar{x}$ is just effective as any estimation that could be based on $x_{1}, x_{2}, \ldots, x_{n}$. If we use statistics to extract all the information $x_{1}, x_{2}, \ldots, x^{n}$, sample about μ then it is sufficient on enough to observe only r_{1}.

Let x_{1}, \ldots, x_{n} be a random sample from poplin, with PDF or PMF $f(x ; \theta)$. Following Fisher, we call T a sufficient (or an exhaustive) statistic if it contains all the information about θ that is contained in the sample.

Definition 1. Sufficient statistic
Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample drawn from F_{θ}.
A statistic $S=S\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is said to be a sufficient statistic of θ iff $P_{\theta}[x \in A \mid S=8]$ is independent of θ $\forall \theta \in \Omega$ and for all A, i.1. the conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $s=s$ does not depend on θ, for any values

Remark:- The definition says that a statistic S is sufficient if you know the values of the statistic s, then the sample values themselves are not needed and can tell you nothing more about θ.

1. Illustrative Example: - Let $\left(x_{1}, \ldots, x_{n}\right)$ be ans. from B in $(1, p)$, show that, using definition, $S=\sum_{i=1}^{n} x_{i}$ is sufficient for p. Soln \rightarrow [Suppose, we are given a loaded coin and asked to infer about p, the probability of head.

To canny out the inference, the coin is tossed n times and the S-F (success-failure) hun has been recorded. Let the records be $x_{1}, x_{2}, \ldots, x_{n}$; where x_{i} is a realisation on x_{i}. It is evident that $x_{i}{ }^{\prime} s$ are independent of each other. To infer about p, it is not necessary to know which trial results in success cohere as it is sufficient to know the number of success, ie. $\sum_{i}^{n} x_{i}$. Now, woe show that this goes consistent with the ${ }^{i=1}$ definition.]
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $\operatorname{Bin}(1, p)$, where p being the probability of success, Let us define, $S=\sum_{i=1}^{n} x_{i}$
Now, we need to show's is sufficient.
Let us consider the conditional distribution of the risigiven
that the distr of the statistic.

$$
\begin{aligned}
& P\left[X_{1}=x_{1}, x_{2}=x_{2}, \ldots, X_{n}=x_{n} \mid S=s\right] \\
= & \frac{P\left[X_{1}=x_{1}, x_{2}=x_{2}, \ldots, x_{n}=x_{n}, S=s\right]}{P[S=s]}
\end{aligned}
$$

$= \begin{cases}\frac{P\left[x_{1}=x_{1}, x_{2}=x_{2}, \ldots, x_{n}=x_{n}\right]}{P\left[\sum_{i=1}^{n} x_{i}=s\right]}, & \text { if } s=\sum_{i=1}^{n} x_{i}, \\ 0, & \text { ow } \\ = \begin{cases}\frac{p^{2 x_{i}}(1-p)^{n-\sum x_{i}}}{}, \text { if } s=\sum x_{i}, \text { where } x_{i}=0 \text { or } 1 \text { fi=1(1) } n .\end{cases} \\ \begin{array}{ll}n \\ \Lambda\end{array} p^{1}(1-p)^{n-s} & \text { ow }\end{cases}$

$$
=\left\{\begin{array}{cc}
\frac{1}{\binom{n}{s}} & \text { if } s=\sum_{i=1}^{n} x_{i} \\
0 & \text { ow }
\end{array}\right.
$$

Hence, the conditional distribution is independent of p.
\therefore By definition. $S=\sum_{i=1}^{n} x_{i}$ is sufficient for p.
Note:- The random sample itself $T=\left(x_{1}, \ldots, x_{n}\right)$ is trivially a sufficient statistic.
Remark:- Definition (I) is not a constructive definition, since it requires that we first guess a statistic T and then check to see whether T is sufficient or not, it does not provide any clue to what the choice of T should be.
Definition 2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from the PMF or PDF $f(x ; \theta)$. A statistic S is defined to be a sufficient statistic if the conditional distribution of T given $S=8$ does not depend on θ, for any statistic T, for any value of s.

This definition in particularly is useful to show that a statistic S is not sufficient.
Definition:- Joint sufficient statistic
Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be a random sample from the density fo . The statistics $T_{1}, T_{2}, \ldots, T_{r}$ are defined to be jointly sufficient if the conditional distribution of $x_{1}, x_{2}, \ldots, x_{n}$ given $s_{1}=s_{1}, s_{2}=s_{2}, \ldots$, $S_{r}=8 r$ is independent of the unknown parameter θ.
Remark: - If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is ordered then the order statistics $\overline{X_{(1)}, X_{(2)}}, \ldots, X_{(n))}$ will also be sufficient, since $\left(X_{(1)}, X_{(2)}, \ldots, X_{(n)}\right)$ is nothing but n! permutations of $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. Hence if we consider the conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$ will be $\frac{1}{n!}$, which is independent of θ. Another approach of showing $\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$ as a sufficient statistic is factorization theorem.

Ex.(2). Example of a statistic that is not sufficient:-
Let $\left(x_{1}, x_{2}, x_{3}\right)$ be a r.s. from $\operatorname{Bin}(1, p)$. Is $T=x_{1}+2 x_{2}+x_{3}$ sufficient for p ? Is $x_{1} x_{2}+x_{3}$ is sufficient for p ?
Ans:-
(i) Here T takes the values $0,1,2,3,4$,

$$
\begin{aligned}
& P\left[x_{1}=1, x_{2}=0, x_{3}=1 \mid T=2\right] \\
& =\frac{P\left[x_{1}=1, x_{2}=0, x_{3}=1 ; T=2\right]}{P[T=2]} \\
& =\frac{P\left[x_{1}=1, x_{2}=0, x_{3}=1\right]}{P\left[x_{1}=1, x_{2}=0, x_{3}=1\right]+P\left[x_{1}=0, x_{2}=1, x_{3}=0\right]} \\
& =\frac{p^{2}(1-p)}{p^{2}(1-p)+p(1-p)^{2}}=\frac{p}{p+1-p}=p, \text { cohich depends on p. }
\end{aligned}
$$

Hence T is not sufficient for p.
(ii) Here, $x_{1} x_{2}+x_{3}=T$

Let us consider a specific case, $x_{1}=1, x_{2}=1, x_{3}=0$ and $T=1$.
Here $x_{1} x_{2}+x_{3}=1$ for,

$$
\begin{aligned}
& \left\{\left(x_{1}=1, x_{2}=1, x_{3}=0\right),\left(x_{1}=1, x_{2}=0, x_{3}=1\right),\left(x_{1}=0, x_{2}=1, x_{3}=1\right. \text {, }\right. \\
& \left.\left(x_{1}=0, x_{2}=0, x_{3}=1\right)\right\} \\
& \therefore P\left[\left(x_{1}=1, x_{2}=1, x_{3}=0\right) \mid T=1\right] \\
& =\left\{\begin{array}{cl}
\frac{P\left[x_{1}=1, x_{2}=1, x_{3}=0\right]}{P[T=1]} & , \text { if } T=1 \\
0 & \text {, ow }
\end{array}\right. \\
& = \begin{cases}\frac{p^{2}(1-p)}{3 P^{2}(1-p)+(1-p)^{2} p} & \text { if } T=1 \\
0, & \text { ow }\end{cases} \\
& = \begin{cases}\frac{p}{2 p+1} & \text {, if } T=1 \\
0 & \text {, ow }\end{cases}
\end{aligned}
$$

i.e. T is not sufficient for p.

Ex, (3), Let $x_{1}, x_{2} \ldots, x_{n}$ be a ri. from $P(\lambda) \cdot S \cdot T, S=\sum_{i=1}^{n} x_{i}$ is sufficient for λ.
Ans:-

Ex.(4). Let $\left(x_{1}, x_{2}\right)$ be a r.s. from $P(\lambda)$, s.T. $T=x_{1}+2 x_{2}$ is not sufficient for λ.
ANS:-

$$
\left.\begin{array}{rl}
P\left[X_{1}=0, X_{2}=1\right. \\
1
\end{array} T=2\right]=\frac{p\left[x_{1}=0, x_{2}=1\right]}{p\left[x_{1}+2 x_{2}=2\right]} .
$$

This depends on λ. So, T is not sufficient.

Ex. (5). Let $\left(x_{1}, \ldots, x_{n}\right)$ be a res. from Geo (p). Find The conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $\sum_{i=1}^{n} x_{i}=s$. Hence comment on $\sum X_{i}$ as an estimator of p.
Solution:- As $x_{i} \xrightarrow{i i d}$ Geometric (p), $i=1(1)^{n}$.

$$
\sum_{i=1}^{n} X_{i} \sim N B(n, p)
$$

Now,

$$
\begin{aligned}
& P\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid \sum_{i=1}^{n} x_{i}=\lambda\right] \\
& =\frac{P\left[x_{1}+x_{1}, \ldots, x_{n}=x_{n} ; \sum_{i=1}^{n} x_{i}=8\right]}{P\left[\sum_{i=1}^{n} x_{i}=s\right]} \\
& = \begin{cases}\frac{P\left[X_{1}=x_{1}, \ldots . ., X_{n}=x_{n}\right]}{P\left[\sum_{i=1}^{n} X_{i}=s\right]} & \text {; if } s=\sum_{i=1}^{n} x_{i} \\
0 & \text { ow }\end{cases} \\
& = \begin{cases}\prod_{i=1}^{n}\left\{p(1-p)^{x_{i}}\right\} & \text {; if } s=\sum_{i=1}^{n} x_{i} \\
\binom{s+n-1}{s} p^{n} q^{s} & \text {; ow }\end{cases} \\
& =\left\{\begin{array}{lc}
\frac{1}{\binom{s+n-1}{s}} & \text { if } s=\sum_{i=1}^{n} x_{i} \\
0 & \text { bows }
\end{array}\right.
\end{aligned}
$$

, which is independent of p.
Hence, by definition, the statistic $\sum_{i=1}^{n} x_{i}$ is sufficient for p.
EX.(6). Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a bis. from the p.m.f.

$$
P(x ; N)= \begin{cases}\frac{1}{N}, & x=1(1) n \\ 0, & \text { ow }\end{cases}
$$

Find the conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $X(n)=s$. Hence comment on $X(n)$ as an estimator of N.

Remark:- Let $f(x ; \theta)$ be the PMF of PDF of $x=\left(x_{1}, \ldots, x_{n}\right)$ and $\overline{g(t ; \theta)}$ be the PMF or PDF of the statistic $T(x)$.
for discrete case, $P[\underset{\sim}{x}=\underset{\sim}{x} \mid T(\underset{\sim}{x})=t]$

$$
\begin{aligned}
& =\frac{P[\underset{\sim}{x}=\underset{\sim}{x} ; T(\underset{\sim}{x})=t]}{P[T(\underset{\sim}{x})=t]} \\
& = \begin{cases}\frac{P[\underset{\sim}{x}=\underset{\sim}{x}]}{P[T(\underset{\sim}{x})=t]} & \text { if } t=T(\underset{\sim}{x}) \\
0 & \text { ow }\end{cases} \\
& = \begin{cases}\frac{f(x ; \theta)}{g(t ; \theta)} \text { if } t=T(\underset{\sim}{x}) \\
0 & \text { ow }\end{cases}
\end{aligned}
$$

If $P[\underset{\sim}{x}=x \mid T(\underset{\sim}{x})=t]=\frac{f(x ; \theta)}{g(t ; \theta)}$ is independent of θ, then $T(\underset{\sim}{x})$ is sufficient for θ.
In general, we have for continuous \& discrete distribution, if the ratio $\frac{f(x ; \theta)}{g(t ; \theta)}$ is independent of θ, then $T(\underset{\sim}{x})$ is sufficient for θ.
Ex. (7). Let $x_{1}, x_{2} \ldots x_{n}$ be arms. from $N(\mu, 1)$. S.T. using def.,
Ans: \bar{x} is sufient for μ
ANS:- The PDF of $x_{\sim}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is

$$
f(x ; \mu)=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{1}{2}} \cdot \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} ; \quad x_{i} \in \mathbb{R}
$$

$$
\begin{aligned}
& \text { and the pDF of } \bar{x} \text { is } \\
& \qquad g(\bar{x} ; \mu)=\left(\frac{1}{\left.\sqrt{\frac{2 \pi}{n}}\right)} \cdot e^{-\frac{n}{2}(\bar{x}-\mu)^{2}} ; \bar{x} \in \mathbb{R}\left[\text { Hence } \bar{x} \sim N\left(\mu, \frac{1}{n}\right)\right]\right. \\
& \therefore \text { The ratio } \frac{f(\bar{x} ; \mu)}{g(\bar{x} ; \mu)}=\frac{\sqrt{n}}{(2 \pi)^{\frac{n+1}{2}}} e^{-\frac{1}{2}\left\{\sum\left(x_{i}-\mu\right)^{2}-n(\bar{x}-\mu)^{2}\right\}} \\
& \\
& =\frac{\sqrt{n}}{(2 \pi)^{\frac{n+1}{2}}} e^{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} ;\left[\because \sum\left(x_{i}-\mu\right)^{2}\right. \\
& \text { which is independent of } \mu .
\end{aligned}
$$

Hence, by definition, \bar{x} is sufficient for μ.

Ex.(8). Let $\left(x_{1}, \ldots, x_{n}\right)$ be a rus. from $u(0, \theta), \theta>0$; ST. $X(n)$ is sufficient for θ.
Son:- $X_{(n)}$ is sufficient for θ if the conditional distribution of X given $X(n)=x(n)$ is independent of θ, i.e. if the ratio $\frac{f(x ; \theta)}{g(x ; n) ; \theta)}$ is independent of θ.
for $0<x_{i}<\theta$, and $0<X(n)<\theta$;

$$
\begin{aligned}
\frac{f(x ; \theta)}{g\left(x_{(n)} ; \theta\right)} & =\frac{\left(\frac{1}{\theta}\right)^{n}}{\frac{n\left\{x_{(n)}\right\}^{n-1}}{\theta^{n}}} \text {, if } 0<x_{(n)}<\theta \\
& =\frac{1}{n\left\{x_{(n)}\right\}^{n-1}} ; \text { if } 0<x_{(n)}<\theta
\end{aligned}
$$

which is independent of θ.
Hence $X_{(n)}$ is sufficient for θ.

Note:-
Definition (I):- $P[\underset{\sim}{x}=\underset{\sim}{x} \mid s=s]$ is independent of θ.
Definition (II):-P[T=t|S=s] is independent of θ.
Defn. (II) is useful to show that a statistic s is not sufficient since from the idea of sampling distribution, it is known that $P[T=t \mid s=s]$ does not depend on θ.

Factorization Criterion (Due to Fisher): \sim
The requirement for factorization theorem: \sim for a given family of distribution if we are to find a sufficient statistic for the labelling parameter, it will be difficult to adopt the definition of sufficiency as a criterion in choosing a sufficient statistic. Because according to the definition of sufficient statistic $P[X \in A \mid T=t]$ (where, A being a function of t), are not uniquely defined and the question arises cohether determinations exist or not for some fixed t. The answer is that is is possible. cohen the sample space is euclidean.
Secondly, the determination of sufficient statistic by means of its definition is inconvenient since it requires, first guessing a statistic. T that might be sufficient and then checking whether the conditional distribution of x given $T=t$ is independent of θ or not.
Therefore, we need a simpler criterion which can be adopted as a tool to find a sufficient statistic. Such a criterion is given in terms of factorization theorem due to Fisher and Neyman.
Theorem: Factorization criterion: ~ We now give a criterion for determining sufficient statistics:
Statement:- Let $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\underset{\sim}{x}$ be a res. from PMF or, PDF $f(x ; \theta) \forall \theta \in \Omega$. Then $T(x)$ is sufficient for θ if we can factor the PMF or PDF of x as

$$
\begin{equation*}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=g(T(\underset{\sim}{x}), \theta) h(\underset{\sim}{x}) \tag{*}
\end{equation*}
$$

cohere, $h(x)$ depends on x but not on θ and $g(T(x), \theta)$ depends on θ and on x only through $T(\underset{\sim}{x})$.
Proof:- [Discrete case only]
Only if (Necessary) Part: - Leet, $T(x)$ is sufficient for θ. Then, $P[\underset{\sim}{x}=\underset{\sim}{x} \mid T(x)=t]$ is independent of θ and

$$
\begin{aligned}
P_{\theta}[\underset{\sim}{x}=\underset{\sim}{x}] & =P_{\theta}[\underset{\sim}{x}=\underset{\sim}{x} ; T(\underset{\sim}{x})=t] \quad \text { if } t=T(\underset{\sim}{x}) \\
& =P_{\theta}[T(\underset{\sim}{x})=t] P[\underset{\sim}{x}=\underset{\sim}{x} \mid T(\underset{\sim}{x})=t] \text { if } T(\underset{\sim}{x})=t
\end{aligned}
$$

for values of $\underset{\sim}{x}$ for which $P_{\theta}[x=x]=0 \forall \theta \in \Omega$.
Let us define, $h(\underset{\sim}{*})=0$ and for x for which $P_{\theta}[\underset{\sim}{x}=x]>0$, for some θ. We define, $h(\underset{\sim}{x})=P[X=\underset{\sim}{x} \mid T(\underset{\sim}{x})=t]$ and

$$
g(T(x) ; \theta)=P_{\theta}[T(\underset{\sim}{x})=t]
$$

Thus we see that (*) holds.

If sufficient) Part: - Let the factorization criterion (x) holds. Then, for fixed t, we have.

$$
\begin{aligned}
& P_{\theta}[T(x)=t] \\
&= \sum_{\sim} P_{\theta}\left[X_{\sim}=x\right] \\
&\left\{\underset{\sim}{x}: T\binom{x}{\sim}=t\right\} \\
&= \sum_{\sim} g(T(x) ; \theta) \cdot h(x) \\
&\{x: T(\underset{\sim}{x})=t\} \\
&=\left.g(t, \theta) \sum_{\{x: T(\underset{\sim}{x})} h(\underset{\sim}{x})=t\right\}
\end{aligned}
$$

suppose that $P_{\theta}[T(\underset{\sim}{x})=t]>0$ for some θ.
Then,

$$
\begin{aligned}
& P_{\theta}[\underset{\sim}{x}=\underset{\sim}{x} \mid T(\underset{\sim}{x})=t] \\
& =\frac{P_{\theta}[\underset{\sim}{x}=\underset{\sim}{x} ; T(\underset{\sim}{x})=t]}{P_{\theta}[T(\underset{\sim}{x})=t]} \\
& = \begin{cases}\frac{P_{\theta}[X=x]}{P_{\theta}[T(X)=t]} & \text { if } t=T(x) \\
0 & \text { if } t=T(x)\end{cases} \\
& =\left\{\begin{array}{cl}
\frac{g(T(z), \theta) h(x)}{g(t, \theta) \sum_{n} h(x)} & \text { if } t=T(x) \\
\{x: T(x)=t\} & \text { aw } \\
0 &
\end{array}\right. \\
& = \begin{cases}\frac{h(x)}{\sum_{\{x} h(x)} & \text { if } t=T(x) \\
0 & \text { ow }\end{cases}
\end{aligned}
$$

, cohich is independent of θ.
Hence $T(\underset{\sim}{x})$ is sufficient statistic for θ.
Remark:- 1. The factorization criterion cant be used to show that a given statistic T is not sufficient. To do this one coould normally have to use the definition of sufficiency.

- is sufficient for $\left\{F_{\theta}: \theta \in W\right.$ sufficient for $\left\{F_{\theta}: \theta \in(A)\right\}$, then T trivially from the definition.

Result:- 1 Th T is sufficient for θ, then any one-to-one function of Tis also sufficient for θ, ire. the bijection of T is also O a sufficient statistic for θ.
Proof:- Let $U=\phi(T)$ is a one-to-one function, then $T=\phi^{-1}(U)$ exists.
Now,

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & =g(t ; \theta) h(\underset{\sim}{x}) \\
& =g\left(\phi^{-1}(u) ; \theta\right) h(\underset{\sim}{x}) \\
& =g^{*}(u, \theta) \cdot h(\underset{\sim}{x})
\end{aligned}
$$

By factorization criterion, it is sufficient for θ.
2) If T_{1}, T_{2} be two different sufficient statistics, then they are related.
Proof:-

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=g_{1}\left(t_{1}, \theta\right) h_{1}(\underset{\sim}{x}) \\
&=g_{2}\left(t_{2}, \theta\right) h_{2}(\underset{x}{x}) \\
& \Rightarrow \frac{g_{1}\left(t_{1}, \theta\right)}{g_{2}\left(t_{2}, \theta\right)}=\frac{h_{2}(\underset{\sim}{x})}{h_{1}(\underset{\sim}{x})}, \text { which is independent of } \theta . \\
& \Rightarrow \psi\left(t_{1}, t_{2}\right)=h^{*}(\underset{\sim}{x})
\end{aligned}
$$

$\Rightarrow T_{1}$ and T_{2} are related.
It does not follow that every function of a sufficient statistic is sufficient:
If T_{1} is sufficient then $T_{2}=f\left(T_{i}\right)$ is sufficient if f is one-toone; otherwise, T_{2} may be on may not be sufficient.
3) For a r.s. $\underset{\sim}{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from the PMF or PDF $f(x ; \theta)$, the entire sample $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is sufficient for θ. Also the order statistics $\left(X_{(1)}, X_{(2)}, \ldots, x_{(n)}\right)$ is sufficient for θ.
Proof:- The PMF ot PDF of x is

$$
f x_{1}, x_{2}, \ldots, x_{n}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

Note that,

$$
\begin{aligned}
& f x_{(1)}, x_{(2)}, \ldots, x_{(n)}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=n!f_{x_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right) \\
& \Rightarrow f x_{1}, \ldots, x_{n}\left(x_{1}, \ldots, x_{n} ; \theta\right)\left.=\frac{1}{n!} f x_{1}\right), x_{(2)}, \ldots, x_{(n)}\left(x_{1}, \ldots, x_{n} ; \theta\right) \\
&=g\left(T\left(x_{n}\right), \theta\right) h\left(x_{n}\right)
\end{aligned}
$$

wore re $h(\underset{\sim}{x})=\frac{1}{n!}$ and $T(\underset{\sim}{x})=\left(X_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$
By factorization criterion, $\left(X_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$ is sufficient for θ.

Note:-
[Concept of sufficiency implies-
entire sample's sufficiency = sufficiency of order statistic;
Property of data summarization implies order statistic is more preferable than entire sample's sufficiency. $]$
According to the concept of sufficiency as space reduction both. $\left(X_{1}, x_{2}, \ldots, X_{n}\right)$ and $\left(X_{(1)}, X_{(2)}, \ldots, X_{(n)}\right)$ are in the same position and both the statistics are Known as trivial sufficient statistics. According to the concept of data summarisation as a property of statistic, the ordered statistics are preferable than the original samples. for, in stead of collecting n ! original samples, we may. collect only the order statistics.
Remark:- Any statistic $T(\underset{\sim}{x}$) defines a form of data reduction or data summary. An experimental coho uses only the observed value of the statistic T(X) rather than the entice. observed sample x, soil treat as x and y that satisfy $T(\underset{\sim}{x})=T(\underset{\sim}{y})$, even though the actual sample values may be different. Data reduction in terms of a particular statistic can be thought of as the partition of the samplespace x. Note that $T(x)$ describes a mapping $T: x \rightarrow \tau$, cohere $\tau=\{t: t=T(\underset{\sim}{x}), \underset{\sim}{\underset{\sim}{x}} \in \mathcal{X}\}$, then $T(\underset{\sim}{x})$ partitions the sample space into sets $A_{t}: t \in \tau$ defined $A_{t}=\{\underset{\sim}{x}: T(x)=t\}$ the statistic summarises the data in that rather than reporting all the samples x, itpeports only $T(x)=t$. The sufficiency principle promotes a method of data reduction that does not discard information about θ while achieving some summarization of data.

Ex. (1). Sufficient statistics for $P(\lambda)$ distribution:-
Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a r.s. from $P(\lambda)$.
Then $\prod_{i=1}^{n} f\left(x_{i} ; \lambda\right)=e^{-n \lambda} \cdot \frac{\lambda \sum_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}}$, if $x_{i}=0,1,2, \ldots$.

$$
=g(T(x), \lambda) \cdot h(\underset{\sim}{x})
$$

where $h\left(x_{x}\right)=\frac{1}{\prod_{i=1}^{n} \underline{x_{i}}}$ and $T(x)=\sum_{i=1}^{n} x_{i}$
Hence, by factorization criterion, $T(x)=\sum_{i=1}^{n} x_{i}$ is sufficient for λ.
Also note that, -
(i) ${\underset{\sim}{1}}^{T_{1}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is sufficient for λ, as

$$
\frac{1}{2}^{\prime} T_{\sim}=\sum_{i=1}^{n} x_{i}
$$

(ii) $T_{2}=\left(x_{1}, \ldots, x_{n-2}, x_{n-1}+x_{n}\right)$ is sufficient for λ, as

$$
\frac{1}{\sim}^{\prime} T_{2}=\sum_{i=1}^{n} x_{i}
$$

(ii) $T_{n-1}=\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right)$ is sufficient for λ. Ir is clear that $T(x)=\sum_{i=1}^{n} x_{i}$ reduces the space most and is To be preferred.
We should always looking for a sufficient statistic that results in The greatest reduction of the space.
Ex.(2). If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a bis. from $\operatorname{Bin}(1, p)$ or Bernoulli (p) distr. then find a one-dimensional sufficient statistic for p.
Son.:-

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; p\right)=\left\{\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-2 x_{i}}\right\} x_{1} \\
&=g\{T(x), \theta\}, h(\underset{\sim}{x}), \text { where } h(x)=1 \\
& \text { and } T(\underset{\sim}{x})=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Hence $T=\sum_{i=1}^{n} x_{i}$ is sufficient estimators of θ.
$\therefore \quad \sum_{i=1}^{n} x_{i}$ is sufficient for ot, by factorization criterion.

Ex. (3) If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a r.s. from $N\left(\mu, \sigma^{2}\right)$. Then find a two -dimensional sufficient statistic for $(\mu, 0)$.

$$
\begin{aligned}
& \text { Solution:- The PDF of } x \text { is } \\
& \prod_{i=1}^{n} f\left(x_{i} ; \mu, \sigma\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} \\
&=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{\left(-\frac{\sum x_{i}^{2}}{2 \sigma^{2}}+\frac{\mu \sum x_{i}}{\sigma^{2}}-\frac{n \mu^{2}}{2 \sigma^{2}}\right)} \\
&=g(T(x) ; \mu, \sigma) \cdot h(x)
\end{aligned}
$$

cohere, $h(\underset{\sim}{x})=1$ and $T(\underset{\sim}{x})=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}{ }^{2}\right)$
\therefore By factorization criterion, $T(\underset{\sim}{x})=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is sufficient for (μ, σ).
Alternative: -

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \mu, \sigma\right) \\
= & \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} \\
= & \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}}\left\{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right\}} \\
= & \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}}\left\{(n-1) s^{2}+n(\bar{x}-\mu)^{2}\right\}} \\
= & g\left(\bar{x}, s^{2} ; \mu, \sigma\right) h(x), \text { cohere } h(x)=1 .
\end{aligned}
$$

Hence $T(\underset{\sim}{x})=\left(\bar{x}, s^{2}\right)$ is sufficient for (μ, σ).
Remark:- (1). If σ is unknown, then \bar{x} is not sufficient for μ. But if σ is known \bar{x} is sufficient for μ.
(2). If μ is unknown, then s^{2} is not sufficient for σ but if μ is known then $T=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=(n-1) s^{2}+n(x-\mu)^{2}$ or $\left(\bar{x}, s^{2}\right)$ is sufficient for σ.
Ex.(4), Let $x_{1}, x_{2}, \ldots, x_{n}$ be a bis. from Geometric (b). suggest $\frac{a}{x}$ one-dimensional sufficient statistic for p.
Is $e^{\bar{x}}$ sufficient for p.
Hints:- $e^{\bar{x}}$ is a one-to-one function of \bar{x}.

Ex.(5). Uniform Distribution:-
Let $x_{1}, x_{2}, \ldots . . x_{n}$ be a res. from $\cup(0, \theta), \theta>0$. Find a one-dimensional sufficient statistic for θ. [ISS]
Soln.:- Horse the domain of definition of $f(x ; \theta)$, ie. the range of the RY depends on θ, great care is needed.
The pdf of X is

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)= \begin{cases}\frac{1}{\theta^{n}}, \text { if } 0<x_{i}<\theta \quad \forall i=1(1) n \\
0,0 w\end{cases} \\
&= \begin{cases}\frac{1}{\theta^{n}} & \text { if } 0<x_{(1)} \leq x_{(n)}<\theta \\
0 & 0 w\end{cases} \\
&=\left\{\begin{array}{l}
\frac{1}{\theta^{n}} \cdot I\left(0, x_{(1)}\right) I\left(x_{(n)}, \theta\right) ; \text { where } I(a, b)=\{1 \text { if } a<b \\
0 ; f a \geqslant 6 \\
0 \quad ; 0 w
\end{array}\right. \\
&=\frac{1}{\theta^{n}} \cdot I\left(x_{(n)}, \theta\right) \cdot I\left(0, x_{(1)} ;\right. \\
&=g(T(x), \theta) \cdot h(x) ; \text { where } h(x)=I\left(0, x_{(1)}\right) \text { and } \\
& T(x)=x_{(n)} .
\end{aligned}
$$

\therefore By factorization criterion, $T(x)=x_{(n)}$ is sufficient for θ.
Ex. (6): - Let $x_{1}, x_{2}, \ldots, x_{n}$ be a ross. from $U\left(\theta_{1}, \theta_{2}\right) ; \theta_{1}<\theta_{2}$. find a nontrivial sufficient statistic for $\left(\theta_{1}, \theta_{2}\right)$.
SolD:- Here the domain of definition of $f(x ; \theta)$ depends on θ_{1} and $\overline{\theta_{2}}$, so great care is needed.
The PDF of $\underset{\sim}{x}$ is $\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)= \begin{cases}\left.\frac{1}{\left(\theta_{2}-\theta_{1}\right.}\right)^{n} & \text { if } \theta_{1} \leq x_{i} \leq \theta_{2} \quad \forall i=1(1) n \\ 0 & \text { ow }\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{cc}
\frac{1}{\left(\theta_{2}-\theta_{1}\right)^{n}} \text { if } \theta_{1} \leq x_{(1)} \leq x_{(n)} \leq \theta_{2} \\
0 & 0 w
\end{array}\right. \\
& =\frac{1}{\left(\theta_{2}-\theta_{1}\right)^{n}} T\left(\theta_{1}, x_{(1)}\right) \pi\left(x_{(n)}, \theta_{2}\right) \text {, where } \\
& I(a, b)=\left\{\begin{array}{cc}
1 & \text { if } a \leq b \\
0 & 0 w
\end{array}\right. \\
& =g\left(T(x) ; \theta_{1}, \theta_{2}\right) h\left(x_{n}\right)
\end{aligned}
$$

where $h(\underset{\sim}{x})=1$ and $T(\underset{\sim}{x})=\left(x_{(1)}, x_{(n)}\right)$.
Hence, by fisher's factorization criterion, $T(\underset{\sim}{x})=\left(x_{(1)}, x_{(n)}\right)$ is sufficient for $\left(\theta_{1}, \theta_{2}\right)$.

Remark:- The following examples are the particular cases of $E x,(6)$:- , x_{n} be a res. from
(i) $u(\theta-1 / 2, \theta+1 / 2)$
(ii) $v(\theta, \theta+1)$
(iii) $u(-\theta, \theta)$

Find a non-trivial sufficient statistic in each case.
Note:- As algebra says, for solving two unknown, it is needed to have at least two equations.
For a single component parameter, it must contain at least one sufficient statistic.
Ex. (7) Let $\left(x_{1}, \ldots, x_{n}\right)$ be a r.s. from $u(-\theta, \theta), \theta>0$. Find a one-dimensional sufficient statistic for θ.
Soln: \rightarrow The PDF of x is

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & = \begin{cases}\left(\frac{1}{2 \theta}\right)^{n} & \text { if }-\theta \leq x_{i} \leq \theta \quad \forall i=\mid(1) n \\
0 & 0 w\end{cases} \\
& =\left\{\begin{array}{cc}
\left(\frac{1}{2 \theta}\right)^{n} i f 0 \leq\left|x_{i}\right| \leq \theta \quad \forall i=1(1) n \\
0 & \text { ow } \\
& =\left\{\begin{array}{cc}
\left(\frac{1}{2 \theta}\right)^{n}, & 0 \leq \min _{i}\left\{\left|x_{i}\right|\right\} \leq \max _{i}\left\{\left|x_{i}\right|\right\} \leq \theta \\
0 & \text { ow }
\end{array}\right. \\
& =\left(\frac{1}{2 \theta}\right)^{n} I\left(0, \min _{i}\left\{\left|x_{i}\right|\right\}\right) I\left(\max _{i}\left\{\left|x_{i}\right|\right\}, \theta\right) ; \\
\text { cohere } I(a, b)= \begin{cases}1 & \text { if } a \geq b \\
0 & 0 w\end{cases} \\
& =g(T(x), \theta) h(x), \text { where } h(x)=I\left(0, \min \left\{\left|x_{i}\right|\right\}\right.
\end{array}\right.
\end{aligned}
$$

Here, $T(\underset{\sim}{x})=\max _{i}\left\{\left|x_{i}\right|\right\}$ is sufficient for θ.
Alt: Note that, here $x_{i} \stackrel{\text { lid }}{\sim} u(-\theta, \theta) \vee i=1(1) n$

$$
\Rightarrow Y_{i}=\left|X_{i}\right| \stackrel{i n d}{\sim} u(0, \theta) \forall i=1(1) n
$$

By Ex.(s); $Y_{n}=\max _{i}\left\{\left|x_{i}\right|\right\}$ is sufficient for θ.
Remark: - Let T be sufficient for a family of distribution $\left\{f_{i}(x) ; i=1,2, \ldots\right\}$.
Here $f_{i}(x)$ may have the different probability laves. If $f_{i}(x)$ have the same probability law with an unknown constant (parameter) θ [eg. $\left.f_{\theta}(x)=N(\theta, 1), \theta \in \mathbb{R}\right]$ then we say that T is sufficient for θ.

Ex, (8). Let x be a single observation from a poplin. belong to the family $\left\{f_{0}(x), f_{1}(x)\right\}$, where,

$$
f_{0}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \text { and } f_{1}(x)=\frac{1}{\pi\left(1+x^{2}\right)} ; x \in \mathbb{R}
$$

Find a non-trivial sufficient statistic for the family of distribution.
Solution:- Writing the family as $\left\{f_{\theta}(x): \theta \in \Omega=\{0,1\}\right\}$
[Here the parameters θ is called labelling parameter]
Define, $I(\theta)= \begin{cases}0 & \text { if } \theta=0 \\ 1 & \text { if } \theta=1\end{cases}$
The PDF of X is

$$
\begin{aligned}
\text { PDF of } X \text { is } \\
\begin{aligned}
f_{\theta}(x) & =\left\{f_{0}(x)\right\}^{1-I(\theta)}\left\{f_{1}(x)\right\}^{I(\theta)} \\
& =\left\{\frac{f_{1}(x)}{f_{0}(x)}\right\}^{I(\theta)} \cdot f_{0}(x) \\
& =\left\{\frac{\frac{1}{\pi\left(1+x^{2}\right)}}{\frac{1}{\sqrt{2 \pi}} e^{-x^{4} / 2}}\right\}^{I(\theta)} \cdot \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
& =g(T(x) ; \theta) \cdot h(x)
\end{aligned}, ~
\end{aligned}
$$

where $h(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ and $T(x)=x^{2}$ or $|x|$
Hence X^{2} or $|X|$ is sufficient for the family of distr..
Ex.(9). Let $x_{1}, x_{2}, \ldots, x_{n}$ be ar.s. from the PMF $\&$
(i) $P[X=0]=\theta, P[X=1]=2 \theta, P[X=2]=1-3 \theta ; 0<\theta<\frac{1}{3}$.
(ii) $P\left[X=k_{1}\right]=\frac{1-\theta}{2}, P\left[X=k_{2}\right]=\frac{1}{2}, P\left[X=k_{3}\right]=\frac{\theta}{2} ; 0<\theta<1$

Ans:- \rightarrow Find a nontrivial sufficient statistic in each case.
(i) Let $T_{0}(x)=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{array} ; T_{1}(x)=\left\{\begin{array}{ll}1 & \text { if } x=1 \\ 0 \text { ow }\end{array} ; T_{2}(x)= \begin{cases}1 & \text { if } x=2 \\ 0 & \text { ow }\end{cases}\right.\right.$

Then the PMF of x is

$$
f(x ; \theta)=\theta T_{0}(x)(2 \theta)^{T_{1}(x)}(1-3 \theta)^{T_{2}(x)}
$$

$$
\begin{aligned}
& \text { Hence the PMF of } x_{i} \text { is } \\
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\theta^{\sum_{i=1}^{n} T_{b}\left(x_{1}\right.}(2 \theta)^{\sum_{i=1}^{n} T\left(x_{i}\right)}(1-3 \theta)^{\sum_{i=1}^{n} T_{2}\left(x_{i}\right)} \\
&=\theta^{T_{0}}(2 \theta)^{T_{1}}(1-3 \theta)^{T_{2}}, \text { where, } T_{k}=\sum_{i=1}^{n} T_{k}\left(x_{i}\right) \text { representsta. }
\end{aligned}
$$

and $T_{0}+T_{1}+T_{2}=n$.

$$
\begin{aligned}
\therefore \prod_{i=1}^{n} f\left(x_{i}, \theta\right) & =\theta^{n-T_{2}}(1-3 \theta)^{T_{2}} \cdot 2^{T_{1}} \\
& =g\left(T_{2}, \theta\right) \cdot h(x)
\end{aligned}
$$

Clearly, T_{2}, the frequency of value 2 in a rus., is sufficient for θ.

Ex.(10). Let $X_{1}, x_{2}, \ldots, x_{n}$ be a res. from the following PDF s. Find the nontrivial sufficient statistic in each case:
(i) $f(x ; \theta)= \begin{cases}\theta x^{\theta-1} & ; 0<x<1 \text { [ISI] } \\ 0 & ; 0 W\end{cases}$
(ii) $f(x ; \mu)=\frac{1}{|\mu| \sqrt{2 \pi}} \cdot e^{-\frac{(x-\mu)}{2 \mu^{2}}} ; x \in \mathbb{R}$
(iii) $f(x ; \alpha, \beta)=\left\{\begin{array}{cl}\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\beta(\alpha, \beta)}, & 0<x<1 \\ 0, & \text { ow }\end{array}\right.$
(iv) $f(x ; \mu, \lambda)= \begin{cases}\frac{1}{\lambda} e^{-\frac{(x-\mu)}{\lambda}}, & , \text { if } x>\mu \\ 0 & , 0 w\end{cases}$
(v) $f(x ; \mu, \sigma)=\left\{\begin{array}{cc}\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\frac{1}{2 \sigma^{2}}(\ln x-\mu)^{2}}, & \text { if } x>0 \\ 0 & \text {, ow }\end{array}\right.$
(vii) $f(x ; \alpha, \theta)= \begin{cases}\frac{\theta \alpha^{\theta}}{x^{\theta+1}} & \text { if } x>\alpha \\ 0 & \text {; ow }\end{cases}$
(vii) $f(x ; \theta)= \begin{cases}\frac{2(\theta-x)}{\theta^{2}} ; & 0<x<\theta \\ 0 ; & 0 w\end{cases}$

Ans:- (i) The joint PDF of $x_{1}, x_{2}, \ldots, x_{n}$ is

$$
\begin{aligned}
f\left(x_{n}\right) & =\theta^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1} \\
& =g_{\theta}\left\{\prod_{i=1}^{n} x_{i}\right\} \cdot h(\underset{\sim}{x}), \text { where } h\left(x_{2}\right)=1
\end{aligned}
$$

and $T(\underset{\sim}{x})=\left(\prod_{i=1}^{n} x_{i}\right)$
2 By Neyman - Fisher. Factorization eristemion,
$T=\prod_{i=1}^{n} x_{i}$ is sufficient for θ.
(ii) $f(x ; \mu, \sigma)=\frac{1}{\omega / \sqrt{2 \sigma}} \cdot e^{-\frac{(x-\mu)}{2 \sigma^{2}}}$

So, $x \sim N\left(\mu, \mu^{2}\right)$, where $\mu \neq 0$.
Bg Ex.(3). $T(X)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}{ }^{2}\right)$ is sufficient for μ.

- Note:- If in the range of x_{i}, there is the parameter of the distribution present, then woe have to use the concept of Indicator function $\left(X_{(1)} \stackrel{\text { op }}{=} X(n)\right)$ or $\min _{i}\left\{x_{i}\right\}$ or $\max _{i}\left\{x_{i}\right\}$.
(iii)

$$
f_{\theta}(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, \text { if } \begin{aligned}
& 0<x<1 \\
& \alpha, \beta>0
\end{aligned}
$$

2 Joint poo of x_{1}, \ldots, x_{n} is

$$
\begin{aligned}
& \text { Joint poo of } x=\left[\frac{1}{B(\alpha, \beta)}\right]^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha-1}\left(\prod_{i=1}^{n}\left(1-x_{i}\right)^{\beta-1}\right) \\
& =g(T(x) ; \alpha, \beta) h(x), \text { cone } h(x)=1 \text { and }
\end{aligned}
$$

$$
T(\underset{\sim}{x})=\left(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{n}\left(1-x_{i}\right)\right) \text { is jointly sufficient for }(\alpha, \beta) \text {. }
$$

(iv)

$$
\begin{aligned}
& f\left(x_{\sim}\right)=\frac{1}{\theta^{n}} \cdot e^{-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)}{\sigma}} \text { if } x_{i}>\mu \\
&=\frac{1}{\sigma^{n}} \cdot \exp \left\{\frac{-\sum_{i=1}^{n} x_{i}-n \mu}{\sigma}\right\} . \begin{array}{r}
I\left(x_{(1)}, \mu\right), \text { cole } \\
I(a, b)=1 \text { if } a \geqslant b \\
\\
=0 \text { ow } \\
\end{array} \\
&=g\left(\sum_{i=1}^{n} x_{i}, x_{(1)} ; \sigma, \mu\right), h(\underset{\sim}{x}), \text { cove } h(\underset{\sim}{x})=1 .
\end{aligned}
$$

Thus, $X_{(1)}$ and $\sum_{i=1}^{n} x_{i}$ are jointly sufficient statistic for μ and σ.
(v) $f(x ; \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e$

$$
-\frac{1}{2 \sigma^{2}}(\ln x-\mu)^{2} ; \text { if } x>0
$$

The joint PDF of x is

$$
\begin{aligned}
& \text { joint PDF of } x \text { is } \\
& \begin{aligned}
& f\left(x_{n}\right)=\frac{1}{\left(\prod_{i=1} x_{i}\right) \sigma^{n}(\sqrt{2 \pi})^{n}} \cdot \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\ln x_{i}-\mu\right)^{2}\right\} \quad \text { if } x_{i}>0 \\
&=\frac{1}{\sigma^{n}(\sqrt{2 \pi})^{n}} \cdot e^{-\left(\frac{\sum\left(\ln x_{i}\right)^{2}}{2 \sigma^{2}}-\mu \frac{\mu \ln x_{i}}{\sigma^{2}}+\frac{n \mu^{2}}{\sigma^{2}}\right)} \\
&= T\left(\sum _ { i = 1 } ^ { n } \operatorname { l n } x _ { i } , \sum _ { i = 1 } ^ { n } (\operatorname { l n } x i) ^ { 2 } ; (\mu , \sigma) \cdot h (\underset { i } { x }) ; \text { where, } \left(\prod_{i=1}^{\left.x x_{i}\right)}\right.\right. \\
& \quad h(x)=\frac{1}{\prod_{i=1}^{n} x_{i}} ; T(x)=\left(\sum_{i=1}^{n} \ln x_{i}, \sum_{i=1}^{n}\left(\ln x_{i}\right)^{2}\right)
\end{aligned}
\end{aligned}
$$

is sufficient for ${ }^{i=1} \mu$ and σ.
(Ni)

$$
\begin{array}{r}
=\left(\theta \alpha^{\theta}\right)^{n} \cdot \frac{1}{\prod_{i=1}^{n}\{x i\}^{\theta+1}} I\left(x_{(1)}, \alpha\right) \text { if } x_{(1)}>\alpha \\
; \text { where } I(\alpha, b)=1 \text { if } \\
=0 \\
=g\left(\prod_{i=1}^{n} x_{i}, x_{(1) ; \theta, \alpha) \cdot h(x) ; \text { where, }}\right.
\end{array}
$$

$h(x)=1$ and hence
$T=\left(\prod_{i=1}^{n} x_{i}, X_{(1)}\right)$ is sufficient for θ and α.
(vii)

$$
\begin{aligned}
& f(x)=\frac{2^{n}}{\theta^{2 n}} \prod_{i=1}^{n}\left(\theta-x_{i}\right) ; 0<x_{i}<\theta \\
&=\left(\frac{2}{\theta^{2}}\right)^{n} \cdot\left(\theta-x_{1}\right)\left(\theta-x_{2}\right) \ldots . .\left(\theta-x_{n}\right) ; 0<x_{i}>\theta \\
&
\end{aligned}
$$

These cannot be expressed in the form of factorization criterion.

So, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or $\left(X_{(1)}, X_{(2)}, \cdots, x(n)\right)$ are
trivially sufficient sufficient θ here, it here is no nontrivial sufficient statistic.
Ex.II. Wet x_{1}, \ldots, x_{n} be a pis. from gamma distr. with of

$$
\begin{aligned}
& f_{\theta}(x)=\frac{\alpha p}{\Gamma(P)} \exp [-\alpha x] x p-1 \text { if } 0<x<\infty \\
& \text { con ere, } \alpha>0, p>0
\end{aligned}
$$

Show that $\sum_{i} x_{i}$ and $\prod_{i} x_{i}$ are jointly sufficient for (α, p).
Sola: $;$

$$
f(\underset{\sim}{x})=\left\{\frac{\alpha^{p}}{\sqrt{P}}\right\}^{n} \cdot \exp \left[-\alpha \sum_{i} \times x_{i}\right\} \cdot(T x i)^{p-1}
$$

$=g(T(x) ; \alpha, p) \cdot h(\underset{\sim}{x}) ;$ where $h(x)=1$.
$\therefore T(x)=\left(\sum_{i=1}^{n} x_{i}, \prod_{i=1}^{Q_{1}} x_{i}\right)$ is jointly sufficient for (α, p).
Ex.12. If $f(x)=\frac{1}{\theta} e^{-x / \theta} ; 0<x<\theta$. Find a sufficient
estimator for θ.
Sorn: \rightarrow

$$
\begin{aligned}
& \text { for } \theta \\
& \begin{aligned}
f(x) & =\frac{1}{\theta^{n}} \cdot \exp \left\{-\frac{1}{\theta} \cdot \sum_{i=1}^{n} x_{i}\right\} \\
& =g\left\{\sum_{i=1}^{n} x_{i}, \theta\right\} \cdot h(x) ; \text { when } h(x)=1
\end{aligned}
\end{aligned}
$$

$\therefore T=\sum_{i=1}^{n} X_{i}$ is sufficient statistic for θ.

Ex.(12). If $f_{\theta}(x)=\frac{1}{2} ; \theta-1<x<\theta+1$, then show that
$X_{(1)}$ and $X_{(n)}$ are jointly sufficient for θ. $\left(X_{i} \sim \cup(\theta-1, \theta+1)\right.$.
Soln: \rightarrow

$$
\begin{aligned}
f(\underline{x}) & =\left(\frac{1}{2}\right)^{n} \\
& =\frac{1}{2^{n}} \cdot I\left(\theta-1, x_{(1)}\right) I\left(x_{(n)}, \theta+1\right) ; \theta-1<x_{(1)}<x_{(n)}<\theta+1
\end{aligned}
$$

where $I(a, b)= \begin{cases}1 & \text { if } a<b \\ 0 & \text { if } a \geqslant b\end{cases}$
$=g(T(x) ; \theta) h(x)$; where $h(x)=\frac{1}{2^{n}}$.
$\therefore T(x)=\left(X_{(1)}, X_{(n)}\right)$ is jointly sufficient for ${ }^{2^{n}} \theta$.
Ex.(14), Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $C(\theta, 1)$, where θ is the location parameters, S.T. There is no sufficient statistic other than the trivial statistic $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or $\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$.
If a random sample of size $n \geqslant 2$ from a cauchy diston with p.d.f.

$$
f_{\theta}(x)=\frac{1}{\pi\left[1+(x-\theta)^{2}\right]} \text {, where }-\infty<\theta<\infty \text {, is considered. }
$$

then can you have a single stefficient statistic for θ ?

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\frac{1}{\pi^{n}\left\{\prod_{i=1}^{n}\left[1+\left(x_{i}-\theta\right)^{2}\right]\right\}}
$$

Note that $\prod_{i=1}^{n}\left\{1+\left(x_{i}-\theta\right)^{2}\right\}$

$$
\begin{aligned}
& =\left\{1+\left(x_{1}-\theta\right)^{2}\right\}\left\{1+\left(x_{2}-\theta\right)\right\}^{2} \ldots \ldots . .\left\{1+\left(x_{n}-\theta\right)^{2}\right\} \\
& =1+\text { term involving one } x i+\text { term involving two } x_{i} i^{\prime}+\ldots . . . \\
& \text { + term involving all } x_{i} i^{\prime} \text {. }
\end{aligned}
$$

+ termirvolving all x_{i} 's.

$$
=1+\sum_{i}\left(x_{i}-\theta\right)^{2}+\sum_{i \neq j} \sum_{j}\left(x_{i}-\theta\right)^{2}\left(x_{j}-\theta\right)^{2}+\cdots \cdot+\prod_{i=1}^{n}\left(x_{i}-\theta\right)^{2}
$$

Clearly, $\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ can not be comitten as $g(T(x), \theta) \cdot h(x)$ for a statistic other than the trivial choices

$$
\left(x_{1}, \ldots, x_{n}\right) \text { or }\left(X_{(1)}, \ldots, X_{(n)}\right) \text {. }
$$

Hence there is no nontrivial sufficient statistic
Therefore, in this ease, no reduction in the space is possible.
\Rightarrow The whole set $\left(x_{1}, \cdots, x_{n}\right)$ is jointly sufficient for θ.

EX.(15). Let X_{1} and X_{2} be $\operatorname{lid} R V_{8}$ having the drecete uniform distribution on $\left\{1,2_{2} \ldots, N\right\}$, colure N is unknown.
Obtain the conditional distribution of x_{1}, x_{2}, given $\left(T=\max \left(x_{1}, x_{2}\right)\right.$. Hence show that T is sufficient for N but $x_{1}+x_{2}$ is not. .

$$
\text { ANs:- }(i) P(T=t)=P\left[\operatorname{Max}\left(x_{1}, x_{2}\right)=t\right]
$$

$$
\begin{aligned}
&=P\left[x_{1}<t, x_{2}=t\right]+P\left[x_{1}=t, x_{2}<t\right] \\
&+P\left[x_{1}<t, x_{0}=t\right]
\end{aligned}
$$

$$
+p\left[x_{1}=t, x_{2}=t\right]
$$

$$
=P\left[x_{1}<t\right] P\left[x_{2}=t\right]+P\left[x_{1}=t\right] P\left[x_{2}<t\right]
$$

$$
+P\left[x_{1}=t\right] P\left[x_{2}=t\right]
$$

Now, $P\left[x_{1}<t\right]=P\left[x_{1}=1\right]+P\left[x_{1}=2\right]+\cdots+P\left[x_{1}=t-1\right]$

$$
=\frac{\frac{1}{N}+\frac{1}{N}+\cdots \cdots+\frac{1}{N}}{(t-1) \text { times }}
$$

$$
=\frac{t-1}{N} .
$$

\& $P\left[x_{1}=t\right]=P\left[x_{2}=t\right]=\frac{1}{N}$
$\therefore P[T=t]=\frac{1}{N} \cdot \frac{t-1}{N}+\frac{t-1}{N} \cdot \frac{1}{N}+\frac{1}{N} \cdot \frac{1}{N}$
$=\frac{2(t-1)+1}{N^{2}}$
$\therefore P\left[X_{1}=x_{1}, X_{2}=x_{2} \mid T=t\right]=\left\{\begin{array}{cc}\frac{P\left[X_{1}=x_{1}, X_{2}=x_{2}\right]}{P[T=t]} & \text { if } \begin{array}{c}\operatorname{Max}\left(x_{1}, x_{2}\right) \\ =t\end{array}, \text { ow } \\ 0, & \text { ow }\end{array}\right.$

$$
=\frac{\frac{1}{N} \cdot \frac{1}{N}}{\frac{2(t-1)+1}{N^{2}}}=\frac{1}{2(t-1)+1},
$$

(ii) $T=x_{1}+x_{2}$, Then,
for $2 \leq t \leq N+1 ; P[T=t]=P\left[x_{1}=1, x_{2}=t-1\right]+P\left[x_{1}=2, x_{2}=t-2\right]$

$$
+\cdots \cdots+P\left[x_{1}=t-1, x_{2}=1\right]
$$

$$
=\frac{t-1}{N^{2}} .
$$

for $N+2 \leq t \leq 2 N ; P[T=t]=P\left[X_{1}=t-N, X_{2}=N\right]+P\left[X_{1}=t-N+1, ~ X_{2}=N-1\right]$

$$
+\cdots \cdots+P\left[X_{1}=N, X_{2}=t-N\right]
$$

$$
\begin{aligned}
& \therefore P\left[X_{1}=x_{1} ; X_{2}=x_{2} \mid T=t\right]=\frac{2 N-t+1}{N^{2}} \\
&=\frac{P\left[X_{1}=x_{1} ; X_{2}=x_{2}\right]}{P\left[X_{1}+X_{2}=t\right]}
\end{aligned}
$$

$$
=\left\{\begin{array}{l}
\frac{1 / M^{2}}{\frac{L-1}{N 2}}=\frac{1}{t-1} \text { if } x_{1}+x_{2}=t \\
\frac{1 / N^{2}}{\frac{2 H-t+1}{N^{2}}}=\frac{1}{2 N-t+1} \text { if } x_{1}+x_{2}=t
\end{array}\right.
$$

which depends on M, so for the and case
($\left.x_{1}+x_{2}\right)$ is not sufficient.

Ex(16), [Theoretical Exercises]
(i) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a bs. from a discrete distribution. Is the statistic $T=\left(x_{1}, \ldots, x_{n-1}\right)$ sufficient?
(ii) Let x_{1}, x_{2} be a RY from $P(\lambda)$. S.T. the statistic $X_{1}+\lambda x_{2}(\lambda>1)$, λ is an integer, is not sufficient for λ.
(iii) Let x_{1}, \ldots, x_{n} be a bis. from $N(\theta, 1)$.ST. \bar{x} is sufficient for θ but \bar{x}^{2} is not. Is \bar{x} sufficient for θ^{2} ?
(iv) Let x be single observation from $N\left(0, \sigma^{2}\right)$. Is x sufficient for σ ? Are $|x|, x^{2}, e^{|x|}$ sufficient for σ ?

Ex .(17).
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a ri. from

$$
f(x ; \mu, \sigma)=\frac{1}{2 \sigma} e^{-\frac{|x-\mu|}{\sigma}} ; x \in \mathbb{R} ; \mu \in \mathbb{R}, \sigma>0 .
$$

Find a sufficient statistic for
(i) σ when μ is known; ($(\vec{i}) \mu$ when σ is known:
(iii) (μ, σ).

Solution:-

$$
\vdots \prod_{i=1}^{n} f\left(x_{i} ; \mu, \sigma\right)=\left(\frac{1}{2 \sigma}\right)^{n} \cdot e^{-\frac{\sum_{i=1}^{n}\left|x_{i}-\mu\right|}{\sigma}} ; x_{i} \in \mathbb{R}
$$

(i) $\frac{\mu \text {-known:- }}{n}$

$$
\begin{aligned}
& \begin{array}{l}
\prod_{i=1}^{n} f\left(x_{i} ; \sigma\right) \\
=\left(\frac{1}{2 \sigma}\right)^{n} \cdot e^{-\frac{\sum\left|x_{i}-\mu\right|}{\sigma}} \\
\quad=g(T(x) ; \sigma) \cdot h(x) ; \text { when e } h(x)=1
\end{array} \\
& \therefore T(x)=\sum_{i=1}^{n}\left|x_{i}-\mu\right|
\end{aligned}
$$

$$
2 \sum_{i=1}^{n}\left|x_{i}-\mu\right| \text { is sufficient for } \sigma \text { ? }
$$

(ii) σ-known:-

$$
\frac{\text { known:- }}{\prod_{i=1}^{n} f\left(x_{i} ; \mu\right)=\left(\frac{1}{2 \sigma}\right)^{n} \cdot e^{-} \frac{\sum_{i=1}^{n}\left|x_{(i)}-\mu\right|}{\sigma}}
$$

Note that, $\sum_{i=1}^{n}\left|x_{i}-\mu\right|=\left|x_{1}-\mu\right|+\left|x_{2}-\mu\right|+\cdots+\left|x_{n}-\mu\right|$ ean't be simplified as μ is notknown.
So, $\left(x_{1}, \ldots, x_{n}\right)$ or $\left(X(1), \ldots, X_{(n)}\right)$ is sufficient fut there is no other sufficient statistic.
(iii)

Ex.(18).
(a) Let x_{1}, \ldots, x_{n} be independently distributed Rr's with densities

$$
f\left(x_{i} ; \theta\right)= \begin{cases}e^{i \theta-x_{i}} & , \text { if } x_{i} \geqslant i \geqslant \\ 0 & \text { (Henexi's are not } \\ \text { random samples) }\end{cases}
$$

Find a one-dimensional sufficient statistic for θ. [SI]
(b) Let X_{1}, \ldots, x_{n} be independently distributed RY's with PDF s

$$
f\left(x_{i} ; \theta\right)=\left\{\begin{array}{l}
\frac{1}{2 i \theta} ;-i(\theta-1) \leq x_{i} \leq i(\theta+1) \\
0 ; \text { ow }
\end{array}\right.
$$

Find a two-dimensional sufficient statistic for θ, Also, find a one - dimensional sufficient statistic, if exists.

Solution:-
(i) The joint PDF of $x_{1}, x_{2}, \ldots, x_{n}$ is
and $T(\underset{\sim}{x})=\min _{i}\left\{\frac{x_{i}}{i}\right\}$ is sufficient for θ, by factorization criterion.
(ii) Hints:-

$$
\begin{aligned}
& (\theta-1) \leq \frac{x_{i}}{i} \leq(\theta+1) \\
& \therefore Y_{i}=\frac{x_{i}}{i} \sim \cup(-\theta+1, \theta+1) \\
& Y_{i}-1 \sim \cup(-\theta, \theta) .
\end{aligned}
$$

$$
T_{1}=\left(\min _{i}\left\{\frac{x_{i}}{i}\right\}, \max _{i}\left\{\frac{x_{i}}{i}\right\}\right)
$$

$$
T_{2}=\max _{i}\left\{\left|\frac{x_{i}}{i}-1\right|\right\}
$$

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)= \begin{cases}e^{\theta \sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} x_{i}} & ; \text { if } x_{i} \geqslant i \theta \quad \forall i=1(1) n \\
0 & ; \text { ow }\end{cases} \\
& =\left\{\begin{array}{l}
e^{\frac{n(n+1) \theta}{2}-\sum_{i=1}^{n} x_{i}} ; \text { if } \frac{x_{i}}{i} \geqslant \theta \quad \forall=1(1) n \\
0 \quad ; 0 w
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =e^{\frac{n(n+1) \theta}{2}} I\left(\theta, \min \left\{\frac{x_{i}}{i}\right\}\right) \cdot e^{-\sum_{i=1}^{n} x_{i}} ; \quad I(a, b)=\left\{\begin{array}{l}
1, a \leq b \\
00 w
\end{array}\right. \\
& =g(T(\underset{x}{x}) ; \theta) \cdot h(\underset{\sim}{x}) ; \text { where } h(\underset{\sim}{x})=e^{-\sum_{i=1}^{n} x_{i}} \text {; }
\end{aligned}
$$

Remark:-
Data summarization And Sufficiency: $=$
Any statistic $T(x)$ defines a form of data reduction or data summary. An experimental who uses only the observed value of the statistic rather than the observed sample. We will treat as equal to too sample x and y that satisfy $T(\underset{\sim}{x})=T(\underset{\sim}{y})$, even though the actual samples may be different. The data reduction in terms of a particular statistic can be thought of as the partition of the sample space x. Note that $T(\underset{\sim}{x})$ describes a mapping $T: x \rightarrow \tau$, where $\tau=\{t: t=T(\underset{\sim}{x}), \underset{\sim}{x} \in \mathfrak{X}\}$ and $T(\underset{\sim}{x})$ partitions the sample space x into the set $A_{t}=\{\underset{\sim}{x}: T(x)=t\}$.

The statistic summarises the data, it reports only $T(x)=t$ rather than reporting all the samples $x i$'s for which $T\left(x_{i}\right)=t$.
The sufficiency, principle promotes a method of data summarization that does not discard any information about θ (the parameter) while achiving some summarization of the data.
'Sufficiency' 'implies -
$\left(\frac{\text { Data summarization + }}{} 100 \%\right.$ information carnies out, ie.
no loss of information)
Wherever 'statistic' just summarises the data, there may be. some loss of information.

Note that, $T_{1}=\left(x_{1}, \ldots, x_{n}\right)$ are $T_{2}=\left(X_{(1)}, \ldots, x_{(n)}\right)$ are both sufficient statistics. But in stead of collecting $n!$ original samples we can collect only order statistics. According to the concept of data summarization, the order statistics are more preferable than the original samples,

Minimal Sufficient Statistic: Since the objective for 100 king for a sufficient statistic is to condense the data without loosing any information. One should always be on the look out for that sufficient statistic which results in the greatest reduction of the data and such a statistic is called minimal sufficient statistic,
Definition:- A statistic T is called a minimal sufficient statistic for θ, provided
(i) T is sufficient for θ.
(ii) T is a function of every sufficient statistic.

Remarks: - If T and U are two sufficient statistics and $U=f(T)$. Which one is better?
\Rightarrow If $f(\cdot)$ is one-to-one then T and $U=f(T)$ are eacievalent with respect to data-summarization.

$f(C)$ is one-to-one
If $f(\cdot)$ is not one-to-one, then U reduces the space most than T and so U is better than T.

$f(\cdot)$ is not one -to one
Theorem:- For two points x and y in the sample space, the ratio $\frac{f(x ; \theta)}{f(y ; \theta)}$ is independent of θ if $T(x)=T(y)$, then $T(x)$ is minimal sufficient for θ.
Proof:- Here $T(x)$ is sufficient statistic for θ.
$f(x ; \theta)=g(T(x) ; \theta) h(x)$ [By factorization criterion] To show $T(x)$ is minimal, let $T^{\prime}(x)$ be any other sufficient statistic By the factorization theorem, there exist fiction g^{\prime} and $h^{\prime} g$ $f(x ; \theta)=g^{\prime}(T(x) ; \theta) \cdot h^{\prime}(\underset{\sim}{x})$. Let, $T^{\prime}(\underset{\sim}{x})=T^{\prime}(\underset{\sim}{y})$, then,

$$
\frac{f(x ; \theta)}{f(y ; \theta)}=\frac{g^{\prime}\left(T^{\prime}(x) ; \theta\right) h^{\prime}(x)}{g^{\prime}\left(T^{\prime}(y) ; \theta\right) h^{\prime}(y)}=\frac{h^{\prime}(x)}{h^{\prime}(y)}
$$

since the ratio does not depend on θ, so $T(x)$ is minimal sufficient for θ.

Ex.(1), Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $\operatorname{Bin}(1, p)$.S.T.
$\sum_{i=1}^{n} x_{i}$ is a minimal sufficient statistic for p.
Soln.: \rightarrow

$$
\begin{aligned}
\frac{f(x ; p)}{f\left(y_{\sim} ; p\right)} & =\frac{p}{\sum_{i=1}^{n} x_{i}(1-p)^{n-\sum_{i=1}^{n} x_{i}}} \\
& =\left(\frac{p}{1-p}\right)^{\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}} ; \text { is independent of } p \\
n x_{i} & =\sum^{n} y_{i}^{n} y_{i}^{n}
\end{aligned}
$$

if $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$.
Hence $T=\sum_{i=1}^{n} x_{i}$ is minimal sufficient for p.
Ex.(2) Let x_{1}, \ldots, x_{n} be ar.s.from $N\left(\mu, \sigma^{2}\right)$. Then sit. $\left(\bar{x}, s^{2}\right)$ is a minimal sufficient statistic for $\left(\mu, \sigma^{2}\right)$.
Sorn. \rightarrow (Normal minimal sufficient statistic)

$$
\begin{aligned}
& \begin{aligned}
\frac{f\left(2 ; \mu, \sigma^{2}\right)}{f\left(y ; \mu, \sigma^{2}\right)} & =\frac{\left(2 \pi \sigma^{y}-n / 2\right.}{} \exp \left(-\left[n(\bar{x}-\mu)^{2}+(n-1) s_{x}^{2}\right] / 2 \sigma^{2}\right) \\
& =\exp \left[\left\{-n\left(\bar{x}^{2}-y^{2}\right)+2 n \mu(\bar{x}-\bar{y})-(n-1)\left(8 x^{2}-s^{2} y\right)\right\} / 2 \sigma^{2}\right]
\end{aligned}
\end{aligned}
$$

This ratio will be a constant as a function of μ and σ^{2} if $\bar{x}=\bar{y}$ and $s_{x} x^{2}=s y^{2}$. Then by the taookem, $\left(\bar{x}, s^{2}\right)$ is a minimal sufficient statistic for $\left(\mu, \sigma^{2}\right)$.
EX.(3). Let X_{1}, \ldots, X_{n} be a random sample from $U(\theta, \theta+1)$, statistic.
SolD. \rightarrow The PDF can be compton in the form:

$$
f(x ; \theta)= \begin{cases}1 & \text { if } \max _{i} x_{i}-1<\theta<\min _{i} x_{i} \\ 0 & \text { ow }\end{cases}
$$

Letting $X_{(1)}=\min _{i} x_{i}$ and $x_{(n)}=\max _{i} x_{1}$, then we have $T(x)=\left(x(1)\right.$, $x\left(r_{0}\right)$ is a minimal sufficient ${ }^{i}$ statistic.
This is a case where the dimension of a minimal sufficient statistic does not match with the dimension of the parameter.
Remark:- A minimal sufficient statistic is not unique. Any one to-one function of a minimal sufficient statistic is also a minimal sufficient statistic. Example:-
i) $T^{\prime}\left(x_{0}\right)=\left(X_{(n)}-X_{(1)},\left(\frac{\left.X_{(n)}+X_{(1)}\right) / 2}{}\right)\right.$ is also a minimal statistic in

EX.(3). (for uniform distr.)
ii) $T^{\prime}(x)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is also a minimal sufficient statistic in Ex.(2). (for normal distr.).
(Iv) COMPLETENESS:-

Wet $\left(X_{1}, \ldots, x_{n}\right)$ be a bis. from the distr coith AMF/PDF $f(x ; 0)$, $\theta \in \Omega$. Let $\{g(t ; \theta): \theta \in \Omega\}$ be the family of distr. of a statistic T.
Definition:- The family of distr. $\{g(t ; \theta) ; \theta \in \Omega\}$ of a statistic T defined to be complete iff $E\{h(T)\}=0 \quad \forall \theta \in \Omega$ implies $P[h(T)=0]=1 \quad \forall \theta \in \Omega$.
Also, the statistic T is said to complete ill its family of distress $\{g(t ; \theta): \theta \in \Omega\}$ is complete.
Ex. (1). Let $x_{1}, \ldots ., x_{n}$ be a ri. from $\operatorname{Bin}(1, p)$. SiT. $\left(x_{1}-x_{2}\right)$ is not complete but $T=\sum_{i=1}^{n} x_{i}$ is complete for the population distr..
Son: \rightarrow Note that, $E\left(x_{1}-x_{2}\right)=p-p=0 \quad \forall p \in(0,1)$
but $P\left[\left(x_{1}-x_{2}\right)=0\right]=P\left[x_{1}=0, x_{2}=0\right]+P\left[x_{1}=1, x_{2}=1\right]$

$$
=(1-p)^{2}+p^{2}
$$

$$
\neq 1
$$

Hence, $\left(x_{1}-x_{2}\right)$ is not complete.
$[T$ is not complete \Rightarrow there exists some $h(T) \neq 0 \Rightarrow E[h(T)]=0]$
Now, note that, $T=\sum_{i=1}^{n} x_{i} \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& \text { Now, } E(h(T))=0 \quad \forall p \in(0,1) \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{n}{t} p^{t}(1-p)^{n-t}=0 \quad \forall p \in(0,1) \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{n}{t}\left(\frac{p}{1-p}\right)^{t}=0 \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{n}{t} u^{t}=0 \quad \forall u=\frac{p}{1-p} ; u \in(0, \infty)
\end{aligned}
$$

Equating the coefficients of $u t$ on both sides, we get

$$
\begin{aligned}
& h(T)\binom{n}{t}=0 \quad \forall t=1(1) n \\
& \Rightarrow h(T)=0, \quad t=0(1) n, \text { as }\binom{n}{t}>0 \\
& \text { i.e. } P[h(T)=0]=1 \quad \forall p \in(0,1) .
\end{aligned}
$$

Hence, $T=\sum_{i=1}^{n} X_{i}$ is complete rand sufficient statistic.

Ex.(2) Wet X be an observation from $P(\lambda)$ distr.. S.T. X is complete, ire. The family of distr. $\{P(\lambda): \lambda>0\}$ is complete.
$\xrightarrow{\text { Sol. } \rightarrow}$

$$
\sum h\left(\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}\right)=0
$$

Ex. (3), Let x_{1}, \ldots, x_{n} be avis. from $U(0, \theta) ; \theta>0$. S.T. $\bar{X}(n)$ is complete.
Solution:- The family of distr. of $T=X(n)$ is $\{g(t ; \theta): \theta>0\}$ where $g(t ; \theta)= \begin{cases}\frac{n t^{n-1}}{\theta^{n}} & \text { if } 0<t<\theta \\ 0 & \text { ow }\end{cases}$
Now, $E(h(t))=0 \quad \forall \theta>0$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{\theta} h(t) \cdot \frac{n t^{n-1}}{\theta^{n}} d t=0 \quad \forall \theta>0 \\
& \Rightarrow \int_{0}^{\theta} h(t) \cdot t^{n-1} d t=0 \quad \forall \theta>0
\end{aligned}
$$

Differentiating wart. θ, we get

$$
\begin{aligned}
& h(\theta) \cdot \theta^{n-1}=0 \quad \forall \theta>0 \\
\Rightarrow & \ln (\theta)=0 \quad \forall \theta>0 \\
\Rightarrow & h(T)=0 \quad \forall \quad t>0 \\
& \therefore P[h(t)=0]=1 ; \theta>0
\end{aligned}
$$

Hence, $T=X(n)$ is complete for the poplin. distr. $U(0, \theta), \theta>0$.
$\left[\frac{\text { Leibnitz Rule:- }}{\text { b(0) }}\right.$
(a) $\frac{d}{d \theta} \int_{a(\theta)}^{b(\theta)} f(x) d x=f(b(\theta)) \cdot b^{\prime}(\theta)-f(a(\theta)) \cdot a^{\prime}(\theta)$.
(b) $\frac{d}{d \theta} \int_{a(\theta)}^{a(\theta)} f(x ; \theta) d x=\int_{a(\theta)}^{b(\theta)} \frac{\partial}{\partial \theta} f(x ; \theta) d x+f\left(b(\theta) \cdot b^{\prime}(\theta)\right)-f\left(a(\theta) a^{\prime}(\theta)\right]$

Ex.(4). Example of sufficient statistic that is not complete:
Leet $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N\left(\theta, \theta^{2}\right)$. Then

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & =\frac{1}{\left(2 \pi \cdot \theta^{2}\right)^{n / 2}} \cdot \exp \left\{-\frac{1}{2 \theta_{i=1}^{2}} \sum^{n}\left(x_{i}-\theta\right)^{2}\right\} ; \theta \neq 0 \\
& =\frac{1}{\left(2 \pi \theta^{2}\right)^{n / 2}} \cdot \exp \left\{-\frac{1}{2}\left[\frac{\sum x_{i}^{2}}{\theta^{2}}-\frac{2 \sum x_{i}}{\theta}+1\right]\right\} \\
& =g\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2} ; \theta\right) \cdot h(\underline{x}), \text { when } h(z)=1
\end{aligned}
$$

$\Rightarrow T=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is sufficient for θ. (This is minimal This is minimal
sufficient statistic)
Note that, $E\left(\sum_{i=1}^{n} x_{i}{ }^{2}\right)=\sum_{i=1}^{n}\left\{v\left(x_{i}\right)+E^{2}\left(x_{i}\right)\right\}$

$$
=\sum_{i=1}^{n}\left(\theta^{2}+\theta^{2}\right)=2 n \theta^{2}
$$

and $E\left(\sum_{i=1}^{n} x_{i}\right)^{2}=E(n \bar{x})^{2}=n^{2} E(\bar{x})^{2}$

$$
\begin{aligned}
& =n^{2}\left\{v(\bar{x})+E^{2}(\bar{x})\right\} \\
& =n^{2}\left(\frac{\theta^{2}}{n}+\theta^{2}\right) \\
& =n(n+1) \theta^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow E\left\{(n+1) \sum_{i=1}^{n} x_{i}{ }^{2}-2\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right\}=0 \forall \theta \neq 0 \\
& \Rightarrow E(h(T))=0 \text {, cohere } h(T)=(n+1) \sum_{i=1}^{n} x_{i}{ }^{2}-2\left(\sum_{i=1}^{n} x_{i}\right)^{2}
\end{aligned}
$$

is not identically zero.
Hence $T=\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}{ }^{2}\right)$ is not complete but sufficient.
Ex, (פ), Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N\left(\alpha \sigma, \sigma^{2}\right)$; α known. S.T. $\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is sufficient but not complete.

Ex.(6), Let x_{1}, \ldots, x_{n} be a ross. from $U(\theta, \theta+1) \cdot S . T$. $\left(X_{(1)}, X_{(n)}\right)$ is sufficient but not complete.
Solution: - Let $R=X(n)-X(1)$ is independent of location parameter θ (as dispersion is index. of location).
The ß.d.f. is $f_{R}(r)=n(n-1) r^{n-2}(1-r)$

$$
\begin{gathered}
E(R)=\frac{n-1}{n+1} \\
\Rightarrow E\left(X_{(n)}-X_{(1)}-\frac{n-1}{n+1}\right)=0 \forall 0 \\
\Rightarrow P\left[X_{(n)}-X_{(1)}-\frac{n-1}{n+1}=0\right] \neq 1
\end{gathered}
$$

Hence $T=(X(r), X(n))$ is sufficient but not complete.

Ex. (7), Let $x_{1}, \ldots . x_{n}$ be a pis, from the PMF

$$
P(x ; N)= \begin{cases}\frac{1}{N} & , x=1,2, \ldots, N \\ 0 & \text { ow }\end{cases}
$$

cohere, N is a positive integer.
show that the family of distr. $X_{(n)}$ is complete.
Soln:: \rightarrow Let $T=X(n)$, the cDF of T is given by,

$$
\begin{aligned}
\therefore F_{T}(t) & =P[X(n) \leqslant t] \\
& =\prod_{x=1}^{n} P\left[X_{1} \leqslant t\right] \\
& =\left(\frac{t}{N}\right)^{n} ; x=1, \ldots, N \\
P[T=t] & =F_{T}(t)-F_{T}(t-1) \\
& = \begin{cases}\frac{t^{n}-(t-1)^{n}}{N^{n}} ; t=1(1) N \\
0 & ; 0 W\end{cases}
\end{aligned}
$$

The family of distr of $T=x_{(n)}$ is $\{g(t ; N): N=1,2,3, \ldots$. cohere $g(t ; N)=\left\{\begin{array}{cl}\frac{t^{n}-(t-1)^{n}}{N^{n}}, t=1,2, \ldots, N \\ 0,0 w\end{array}\right.$
Nope, let $E\{h(T)\}=0 \forall N \geqslant 1$

$$
\begin{aligned}
& \Rightarrow \sum_{t=1}^{N} h(t)\left\{\frac{t^{n}-(t-1)^{n}}{N^{n}}\right\}=0 \quad \forall N \geqslant 1 \\
& \Rightarrow \sum_{t=1}^{N} h(t) \cdot\left\{t^{n}-(t-1)^{n}\right\}=0 \quad \forall N \geqslant 1
\end{aligned}
$$

For $N=1, \quad h(1)\left\{1^{n}-0^{n}\right\}=0 \Rightarrow h(1)=0$
For $N=2, h(1)\left\{1^{n}-0^{n}\right\}+h(2)\left\{2^{n}-1^{n}\right\}=0$

$$
\begin{aligned}
& \Rightarrow h(2)\left\{2^{n}-1^{n}\right\}=0 \text { as } h(1)=0 \\
& \Rightarrow h(2)=0
\end{aligned}
$$

and so on.
Using an inductive argument, we have

$$
\begin{aligned}
& h(1)=h(2)=h(3)=\cdots=h(N)=0 \\
\Rightarrow & P[h(T)=0]=1 \quad \forall N=1,2, \ldots .
\end{aligned}
$$

Hence, $T=X(n)$ is complete.
Remark on Completeness: \sim
(1) Another way of stating that a statistic T is complete is the following :- T is complete if the only unbiased estimation of zero,i.e. a function of T is the statistic that is identically z zero.
(2) If T is complete statistic, then an unbiased estimator on θ

Proof:- If possible, let $h_{1}(T)$ and $h_{2}(T)$ be two UEs of θ.
Then $E\left(h_{1}(T)\right)=\theta=E\left(h_{2}(T)\right) \quad \forall \theta$

$$
\begin{aligned}
& \Rightarrow E\left(h_{1}(T)-h_{2}(T)\right)=0 \forall \theta \\
& \Rightarrow h_{1}(T)-h_{2}(T)=0, \text { with prob. } 1, \forall \theta \\
& \Rightarrow h_{1}(T)=h_{2}(T) \text {, with prob } 1, \forall \theta
\end{aligned}
$$

Hence, an UE of θ based on T is unique.
(3) Concept of completeness: If T is complete, then by definition, $E\{h(T)\}=0 \quad \forall \theta \Rightarrow h(T)=0$ with prob. $1 \forall \theta$. In other coors, if $h(T) \neq 0$ then $E\{h(T)\} \neq 0$ and is afunction. of θ, that is, every non-null function of T possesses some information about θ.

If T is not complete, then there exists some non-null function of T, say $h(T)$, for which $E\{h(T)\}=0$, that is, there exists some non-nullfunction of $T(h(T))$, which don't contain any information about θ, or, some non-null functions of T which forget to carry any information about θ.
But if T is complete, then every non-null function of T carries some information about θ. This is the concept of completeness.

Ex, (8): Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from Geometric distr with parameter $p, S, T, \sum_{i=1}^{n} x_{i}$ is complete for the family.
Solution: \rightarrow Let $T=\sum_{i=1}^{n} X_{i}$ then $T \sim N B(n, p)$.

$$
\begin{aligned}
& E\{h(T)\}=0 \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{t+n-1}{t} p^{n} q^{t}=0 \quad \forall \quad P \in(0,1) \text { and } p+q=1 \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{-n}{t} q^{t}=0
\end{aligned}
$$

Equating the coefficient of at on both sides, we get,

$$
\begin{aligned}
& h(T)\binom{-n}{t}=0 \quad, \text { where } t=1,2, \ldots \\
& \Rightarrow h(T)=0 \\
& \text { i.e. } P[h(T)=0]=1 \forall p \in(0,1)
\end{aligned}
$$

Hence, T is complete.

Exponential Family of Distributions:-
A. One parameter Exponential Family of Distributions: (OPEF)

A one-parameter family of distributions $\{f(x ; \theta): \theta \in \Omega\}$ that $f(x ; \theta)=\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)]$, where the following
regularity conditions hold: regularity conditions hold:
C1: The support $S=\{x ; f(x ; \theta)>0\}$ does not depend on $\theta \forall \theta \in \Omega$
${C_{2}}_{2}$ The parameter space Ω is an open interval of \mathbb{R}, that is, $\theta<\theta<\bar{\theta}$.
c. $\{1, T(x)\}$ or $\{1, u(\theta)\}$ are Linearly independent, that is, $T(x)$,or, $u(\theta)$ are non-constant functions; is defined to be a oneparameter exponential family (OPEF) of distres.
Ex. (1). Let $x \sim P(\lambda), \lambda(\lambda 0)$ is unknown. Show that the family of disturbs $\{P(\lambda): \lambda>0\}$ of x is an OPER.
Solution:- The PMF of x is

$$
\begin{aligned}
f(x ; \lambda) & =e^{-\lambda} \cdot \frac{\lambda x}{x!}, x=0,1,2, \ldots . \\
& =\exp [-\lambda+x \ln \lambda-\ln \mid x] \\
& =\exp [u(\lambda) T(x)+v(\lambda)+c(x)]
\end{aligned}
$$

where, $u(\lambda)=\ln \lambda, T(x)=x, v(\lambda)=-\lambda, \omega(x)=-\ln x$.
Ci: The support $S=\{x: f(x, x)>0\}=\{0,1,2,3, \ldots$.$\} es indetantur$ of λ.
C2: The parameter space $\Omega=\{\lambda: 0<\lambda<\infty\}$ is an open interval of R.
C_{3} : Here $T(x)=x$ or $u(x)=\ln \lambda$ are non-constant functions. Hence, the family of distribution $\{P(\lambda): \lambda>0\}$ is an OPEF. Ex.(2): Consider a family of distr, with PMF given by

$$
f(x ; \theta)= \begin{cases}\frac{a x \theta^{x}}{g(\theta)} & , x=0,1,2, \ldots \\ 0, & \text { ow }\end{cases}
$$

where, $0<\theta<\rho, a_{x} \geqslant 0$ and $g(\theta)=\sum_{x=0}^{\infty} a_{x} \theta^{x}$.
ST $\{f(x ; \theta): 0<\theta<\rho\}$ is an OPEF of ${ }^{x=0}$ distns.
Solution:- Here, $f(x ; \theta)=\exp \left[x \ln \theta-\ln g(\theta)+\ln a_{x}\right], x=0,1,2,3 \ldots$.

$$
\begin{aligned}
& =\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)], x=0,1,2,3, \ldots \\
& =x, u(\theta)=\ln \theta, \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { covers, } T(x)=x, u(\theta)=\ln \theta, v(\theta)+ \\
& \text { port } s=\{0,1,2, \ldots,\} \text { is ind. }
\end{aligned}
$$

C:- The support $s=\{0,1,2, \ldots$,$\} is independent of \theta$. Q2:- The parameter space $\Omega=\{\theta: 0<\theta<\rho\}$ is an open interval of R. Cu:- $T(x)=x$ and $u(\theta)=\ln \theta$ are non-constant functions. Hence, the family of distr is OPEF.

Remark: \rightarrow
(1). As Pocoers series distr are in OPEF, the distributions: Binomial, Poisson, Negative Binomial, etc. are in OPEF.
(2). We should verify that the families $\{N(\mu, 1): \mu \in \mathbb{R}\}$, $\{E \times P(\lambda) ; \lambda>0\}$ are of OPEF's.
(3). As examples of families of PDF s, which are not of $P P E F: 8$
(i) are: $\{U(0, \theta): \theta>0\}$ as the support $S=(0, \theta)$ depends on θ.
(ii) $\{$ Hypergeometric $(N, m, n): N \in\{1,2, \ldots\}, m \in\{0,1, \ldots, N\}$, $n \in\{1,2, \ldots, N\}\}$ as the support $s \in\{\max (0, n+m-N), \ldots, \min (m, n)\}$ depend on the parameters. \longrightarrow (3 parameters case)
(iii) $\{f(x ; \theta): \theta \in R\}$ where, $f(x ; \theta)=\frac{1}{2} e^{-|x-\theta|} ; x \in R$, or, $f(x ; \theta)=\frac{1}{\pi\left\{1+(x-\theta)^{2}\right\}} ; x \in R$ as $f(x ; \theta)$ can't be expressed in the form $\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)]$ but here c_{1}, c_{2} holds but \bar{c}_{3} does not hold.
$: \rightarrow$ This is an another example of one-parameter families of distr, which are not of one parameter exponential family of distress.
(iv) $\{f(x ; \theta): \theta \in R\}$ cohere $f(x ; \theta)= \begin{cases}e^{-(x-\theta)}, & x>\theta \\ 0 & , \text { ow }\end{cases}$ is not in OPEF as the support $s=(\theta, \infty)$ depends on θ.

- Theorem:- Let $\left(x_{1}, x_{2}, \ldots . x_{n}\right)$ be abs. from an OPEF $\{f(x ; \theta): \theta \in \Omega\}$, cohere, $f(x ; \theta)=\exp [u(\theta) T(x)+v(\theta)+w(x)]$, then
(a) $\sum_{i=1}^{n} T\left(x_{i}\right)$ is sufficient for θ.
(b) $\sum_{i=1}^{n} \pi\left(x_{1}\right)$ is a complete sufficient statistic.

Solution :-1 (a) The PDF/PMF of $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & =\exp \left[u(\theta) \cdot \sum_{i=1}^{n} T\left(x_{i}\right)+n v(\theta)+\sum_{i=1}^{n} \operatorname{co}\left(x_{i}\right)\right] \\
& =\exp \left[u(\theta) \cdot\left(\sum_{i=1}^{n} T\left(x_{i}\right)\right)+n v(\theta)\right]^{\prime} \times \exp \left[\sum_{i=1}^{n} \cos \left(x_{i}\right)\right] \\
& =g\left(\sum_{i=1}^{n} T\left(x_{i}\right) ; \theta\right) \cdot h\left(x_{n}\right)
\end{aligned}
$$

By Nayman-fisher factorization criterion, $\sum_{i=1}^{n} T\left(x_{i}\right)$ is sufficient for θ.

Ex.(3):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r s. from an OPEF the PDF

$$
f(x ; \theta)=\left\{\begin{array}{cl}
\theta x^{\theta-1} & ; 0<x<1 \\
0 & ; \text { ow }
\end{array}\right.
$$

Find a complete sufficient statistic for the distr.
Solution:- Note that,

$$
\begin{aligned}
f(x ; \theta) & =\exp [(\theta-1) \ln x+\ln \theta], 0<x<1 \\
& =\exp [\theta \ln x+\ln \theta-\ln x] \\
& =\exp [u(\theta) \cdot T(x)+v(\theta)+u(x)], \text { where, } \\
& T(x)=\ln x, u(\theta)=\theta, \text { etc. }
\end{aligned}
$$

C1: The support $S=\{x: 0<x<1\}$ is independent of θ.
C2: The parameter space $\Omega=\{\theta: 0<\theta<\infty\}$ is an open intemeal of R.
Ca: $T(x)=\ln x$, or, $u(\theta)=\theta$ are non-constant function.
Hence, the family $\{f(x ; \theta): \theta \in \Omega\}$ of distr is an OPEF. Hence, by the above theorem, $\sum_{i=1}^{n} T\left(x_{i}\right)=\sum_{i=1}^{n} \ln x_{i}$ is a complete sufficient statistic.

Ex.(4). Let $x_{1}, \ldots . x_{n}$ be a ross. from $f(x ; \sigma)=\frac{1}{2 \sigma} e^{-\frac{|x|}{\sigma} ; x \in R}$
Find the complete sufficient statistic for the family, $\sigma>0$
Ex.(s), Let x_{1}, \ldots, x_{n} be a res. from $f(x ; \mu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2}} ;$ Find the complete sufficient statistic. $x \in R, \mu \in R$

Son: \rightarrow
[B]. K-parameter Exponential Family of Distribution:-
A k-parameter family of PDF s or PMF\& $\left\{\&(x ; \theta): \theta \in \Omega \subseteq R^{k}\right\}$ that can be expressed as

$$
f(x ; \theta)=\exp \left[\sum_{i=1}^{k} u_{i}(\theta) T_{i}(x)+v(\theta)+\omega(x)\right]
$$

coth the regular conditions:
C1:- The support $S=\{x: f(x ; \underset{\sim}{\theta})>0\}$ does not depend on $\underset{\sim}{\theta}$.
C_{2} :- The parameter space Ω is an open region of R^{k} that is, $\overline{\theta_{i}}<\theta_{i}<\bar{\theta}_{i}, i=1(1) K$, containing K-dimensional rectangle.
C $C_{3}:-\left\{1, T_{1}(x), T_{2}(x), \ldots ., T_{k}(x)\right\}$ or $\left\{1, u_{1}(\theta), \ldots ., u_{k}(\theta)\right\}$ are linearly independent; is called a k-parameter exponential family.
Remark: -
(1) If $\left\{1, T_{1}(x), T_{2}(x), \ldots, T_{k}(x)\right\}$ or $\left\{1, v_{1}(\theta), \ldots ., u_{k}(\theta)\right\}$. is $L D$. Then the no. of terms in the exponent can be reduced and K need not be the dimension of Ω. Hence, $W L G$, ce shall assume that the representation is minimal in the sense that neither T_{i} s nor $M_{i}{ }^{\prime} s$ satisfy a linear constraint.

* 2\rangle Let $x_{1}, x_{2}, \ldots, x_{n}$ be avos. from the family $\left\{f(x ; \theta): \theta \in \Omega \subseteq R^{k}\right\}$ of distributions, cohere,

$$
\begin{aligned}
& \left\{f(x ; \theta): \theta \in \sim \in \Omega \subseteq R^{n}\right\} \\
& f\left(x_{i} \underset{\sim}{\theta}\right)=\exp \left[\sum_{i=1}^{k} \mu_{i}(\theta) T_{i}(x)+v(\theta)+w(x)\right] \text {, then } \\
& T(\underset{\sim}{x})=\left(\sum_{i=1}^{n} T_{1}\left(x_{i}\right), \sum_{i=1}^{n} T_{2}\left(x_{i}\right), \ldots, \sum_{i=1}^{n} T_{k}\left(x_{i}\right)\right)
\end{aligned}
$$

is a complete sufficient statistic for the family.
Ex. (1): - Consider the family $\left\{N\left(\mu, r^{2}\right): \mu \in R, \sigma^{2}>0\right\}$ of distr. 8 . show that the family of distrs is a two parameters exponential family. Hence, obtain a complete sufficient statistic based on a r.s. $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Solution:- Her $\underset{\sim}{\theta}=(\mu, \sigma), \Omega=\{(\mu, \sigma): \mu \in \mathbb{R}, 0<\sigma<\infty\}$ the family of distr is

$$
\{f(x ; \underset{\sim}{\theta}): \theta \in \Omega\} \text {, converse, }
$$

$$
\begin{aligned}
f(x ; \theta) & =\exp \left[-\frac{x^{2}}{2 \sigma^{2}}+\frac{\mu x}{\sigma^{2}}-\frac{1}{2}\left\{\frac{\mu^{2}}{\sigma^{2}}+\ln \left(2 \pi \sigma^{2}\right)\right\}\right] \\
& =\exp \left[u_{1}(\theta) \cdot T_{1}(x)+u_{2}(\theta) \cdot T_{2}(x)+v(\theta)+\omega(x)\right]
\end{aligned}
$$

cohere, $u_{1}(\theta)=-\frac{1}{2 \sigma^{2}}, u_{2}(\theta)=\frac{\mu}{\sigma^{2}}, T_{1}(x)=x^{2}, T_{2}(x)=x$, etc.
C1:- The support $S=R$ is independent of $\underset{\sim}{\theta}$.
C_{2} :- The parameter space Ω is an open subset of R^{2}.
$C_{3}:-\left\{1, T_{1}(x), T_{2}(x)\right\}=\left\{1, x, x^{2}\right\}$ on $\left\{1, \omega_{1}(\theta), u_{2}(\theta)\right\}$

$$
=\left\{1,-\frac{1}{2 \sigma^{2}}, \frac{\mu}{2 \sigma^{2}}\right\} \text { are LiN. }
$$

Hence the family of distributions is too-parameter exponential formily.
By Remark (2):- $T(\underset{\sim}{x})=\left(\sum_{i=1}^{n} T_{1}\left(x_{i}\right), \sum_{i=1}^{n} T_{2}\left(x_{i}\right)\right)=\left(\sum_{i=1}^{n} x_{i}{ }^{2}, \sum_{i=1}^{n} x_{i}\right)$
is a complete sufficient statistic for the family.
Ex.(2):- Is the family $\left\{N\left(\theta, \theta^{2}\right): \theta \neq 0\right\}$ a two-parameten exponential family Oi CPEF? - Justify your answer.
Solution:- The family of distributions is given by $\{f(x ; \theta): \theta \neq 0\}$, covers,

$$
\begin{aligned}
f(x ; \theta) & =\left\{\begin{aligned}
& \frac{1}{\sqrt{2 \pi \theta}} e \frac{-(x-\theta)^{2}}{2 \theta^{2}} ; x i>\theta \\
& 0 ; 0 w
\end{aligned}\right. \\
& =\exp \left[-\frac{x^{2}}{2 \theta^{2}}+\frac{x}{\theta}-\frac{1}{2}\left\{1+\ln \left(2 \pi \theta^{2}\right)\right\}\right] \\
& =\exp \left[u_{1}(\theta) \cdot T_{1}(x)+u_{2}(\theta) T_{2}(x)+v(\theta)+\omega(x)\right]
\end{aligned}
$$

where $u_{1}(\theta)=-\frac{1}{2 \theta^{2}}, u_{2}(\theta)=\frac{1}{\theta}, T_{1}(x)=x^{2}, T_{2}(x)=x$, etc. But the parameter space $\Omega=\left\{\left(\theta, \theta^{2}\right): \theta \neq 0\right\}$ is not an open rectangle in R^{2}, infact, it is a parabola. Hence, C_{2} does not hold that is, the family is not a two-parametero exponential family. This type of family is known as two-parameter curved exponential family.

The PDF $f(x ; \theta)$ does not ensure the form of the OPRF and Ω is not an open interval in R. Hence, it is not an OPEF.

Also notetinat $\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}{ }^{2}\right)$ is not complete but sufficient.

Ex. (3):- Consider the families of distress
(i) $\{\operatorname{Gamma}(a, p): a>0, p>0\}$
(ii) $\{\operatorname{Beta}(\alpha, \beta): \alpha>0, \beta>0\}$
show that the families are two-parameter exponential family. suggest a complete sufficient statistic for each case, based on a res. $\left(x_{1}, \ldots, x_{n}\right)$.
Ex.(4):- Consider the too parameter families of distr:
(i) $\left\{U\left(\theta_{1}, \theta_{2}\right): \theta_{1}<\theta_{2}\right\}$,
(ii) $\left\{f(x: \alpha, \theta)=\frac{\theta x^{\theta-1}}{\alpha \theta} ; \quad \alpha \in R, \theta>0, x>\alpha\right\}$.
(ii) $\left\{f(x ; \theta, \alpha)=\frac{1}{\theta} e^{-\left(\frac{x-\alpha}{\theta}\right)} ; x>\alpha, \alpha \in R, \theta>0\right\}$

Show that they are not two-parameter exponential families.

